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ABSTRACT 

In this paper, we present a brief review of the existing 
computational methods for predicting proteome-wide 
protein-protein interaction networks from high- 
throughput data. The availability of various types of 
omics data provides great opportunity and also un-
precedented challenge to infer the interactome in cells. 
Reconstructing the interactome or interaction network 
is a crucial step for studying the functional relationship 
among proteins and the involved biological processes. 
The protein interaction network will provide valuable 
resources and alternatives to decipher the mechanisms 
of these functionally interacting elements as well as the 
running system of cellular operations. In this paper, we 
describe the main steps of predicting protein-protein 
interaction networks and categorize the available ap-
proaches to couple the physical and functional linkages. 
The future topics and the analyses beyond prediction 
are also discussed and concluded. 
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INTRODUCTION 

Protein always performs its biological functions by interacting 
with other proteins and molecules (Eisenberg et al., 2000; 
Chen et al., 2009, 2010). Many fundamental and essential 
biological processes, such as signal transduction, transport, 
DNA regulatory and alternative splicing, are involved in or 
mediated by protein-protein interactions (PPIs)  (Eisenberg 
et al., 2000; Barabasi and Oltvai, 2004). It is crucial to build a 
proteome-wide protein interaction network of one organism 

for studying its biological functions. There are some tradi-
tionally experimental approaches such as co-immunoprecip-
itation, and newly developed high-throughput techniques 
such as yeast two-hybrid screening and the combination of 
large-scale affinity purification with mass spectrometry, to 
detect protein interactions (Bork et al., 2004). Due to their 
biological importance, there have been some well-known 
databases constructed by collecting the available information 
of protein interactions, such as the reported interactions de-
tected by classical experiments and by the former high- 
throughput techniques (Bork et al., 2004; Stark et al., 2006). 
These interactions are currently collected together in some 
specialized databases for further study and investigation, 
such as HPRD for human PPIs (Prasad et al., 2009) and 
IntAct (Aranda et al., 2009) for PPIs of many species. To 
detect protein interactions, each of the experimental methods 
has its own advantages and weakness mainly due to high 
false positive ratio (Valencia and Pazos, 2002). It is still labor 
tensing and time consuming for detecting the PPIs by these 
experiments. Moreover, the interactions among proteins are 
highly related to the environmental conditions and the dy-
namics of cellular processes (Han et al., 2004a; Bossi and 
Lehner, 2009). Because of the complexity of massive inter-
actions and the difficulty of detecting them by the traditional 
methods, it is urgent to develop novel methods to predict 
protein interactions precisely (Bork et al., 2004; Chen et al., 
2009). The computational methods provide promising alter-
natives for screening and further identifying the relationship 
between these macromolecules and building their full inter-
action map. Actually, the emergence of genomics, transcrip-
tomics, proteomics, and metabolomics resources offers new 
opportunity to infer the protein interaction maps of various 
species from these high-throughput data (Jansen et al., 2003; 
Chen et al., 2009, 2010). The inferred interaction networks 
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are expected to accelerate the interactome research for each 
particular organism and further lead to a comprehensive un-
derstanding of its biological processes.  

The prediction of PPIs is based on a general assumption 
that protein interaction is involved in basic principles and 
evolutionary implications (Valencia and Pazos, 2002). The 
rules of how two proteins interact can be extended to other 
proteins, and the interaction can also be inferred across spe-
cies. The interaction patterns of known interacting protein 
pairs are identified, and implemented to predict unknown 
protein pairs. The conserved interaction mechanisms trans-
ferred in one organism can also be detected in other organ-
isms (Bork et al., 2004). Prediction of protein interaction is 
based on the genomic features representing the two proteins. 
There are numerous methods have been proposed to predict 
the interactions between proteins (Valencia and Pazos, 2002; 
Szilagyi et al., 2005; Skrabanek et al., 2008). We can cate-
gorize them into several groups based on their learning pro-
cesses for interacting features. The genomic features learned 
from these interacting proteins provide the principles for pre-
diction, such as gene neighborhood (Dandekar et al., 1998), 
gene fusion (Enright et al., 1999), subcellular localization (Yu 
et al., 2004; Lee et al., 2008), similarity of evolutionary tracing 
(Pazos and Valencia, 2001, 2002), gene co-expression 
(Jansen et al., 2002), and docking complementarily (Aytuna 
et al., 2005). These features are hypothesized to contribute 
and determine the events of protein interactions. They are 
defined and learned from various aspects of genomic 
perspectives, e.g., sequence, structure, physicochemical 
attributes as well as evolutionary tracing (Valencia and Pazos, 
2002; Jansen et al., 2003). Different methods have suc-
ceeded in their own fields and cases and they also provided 
new alternatives to describe the interacting proteins by en-
coding them into genomic features.  

In this paper, we provide a brief review on the existing 
methods for inferring protein interaction networks from 
high-throughput data. Firstly, we introduce a general frame-
work of prediction. We categorize the available methods into 
two groups, i.e., direct mapping of associated features or 
elements, and indirect coupling of supervised learning. Then, 
we summarize the main methods to address the future chal-
lenges underlying the prediction. The built interaction maps 
reflect the framework of performing biological function of 
thousands of proteins. We also address the advantage in 
these methods for predicting protein interactions. Last but not 
least, we provide several popular and future topics regarding 
to functional analysis.  

FRAMEWORK OF PREDICTION  

Cell comprises thousands of proteins, which always perform 
their functions through interacting with each other (Eisenberg 
et al., 2000). Network presents a powerful model to formulate 
their complicated relationships which are responsible for 

cellular functions of collaborative effects of those individual 
components (Barabasi and Oltvai, 2004). Mathematically, 
given a network or graph G = (V, E), where V is the node set 
and E is the edge set (Chen et al., 2009), we can represent 
protein interactions as a protein-protein interaction (PPI) 
network. The nodes in the PPI network are the interacting 
proteins and the edges refer to their interactions. To predict 
proteome-wide PPIs is to infer the interactions between these 
proteins in a large scale manner, i.e., prediction of E for all 
nodes in V. The assumption of prediction is that protein in-
teractions are conserved across different proteins and spe-
cies (Valencia and Pazos, 2002). Generally, we first extract 
the knowledge of how proteins are interacted, and then ex-
tend to determine which proteins will interact with each other. 
The framework of predicting PPIs is based on the extracted 
and learned genomic features underlying the known PPIs.  

Substantial efforts have been taken to infer proteome-wide 
interaction maps in various species (Valencia and Pazos, 
2002; Szilagyi et al., 2005; Skrabanek et al., 2008). We can 
briefly categorize available methods into two major groups by 
the processes of learning the genomic features from known 
PPIs. As shown in Fig. 1A, the first group is to directly map 
the genomic features underlying these known interacting 
protein pairs into those of predicting ones. Suppose that 
protein A interacts with protein B and we want to predict the 
interaction status between protein X and protein Y. The direct 
mapping methods identify the similarity information between 
the two pairs of proteins by comparisons. For example, A is a 
homolog of Y and B is a homolog of X, then we predict that X 
interacts with Y. The similarities of sequence, structure, in-
terface shape, gene expression, subcellular localization, 
evolutionary information as well as other genomic features 
have been adopted in these interacting protein pairs and the 
predicting protein pairs individually (Skrabanek et al., 2008). 
These elements and features are compared and imple-
mented to predict whether the interaction exists in the pre-
dicting protein pairs or not. Clear, the first group directly 
translocates the information of interacting proteins into the 
targeted protein pairs. However, the features contributing 
for protein interaction events are often not identified directly 
in this prediction. In other words, they can be the knowledge 
of genomic features about PPIs, but are not necessarily 
identified from these known interactions. The features de-
tected in the predicting protein pairs are used to predict the 
existence of interactions (Yu et al., 2004; Lu et al., 2005). 
The methods in the first group explicitly model the mapping 
between unknown protein-protein pairs and features ex-
tracted from known PPIs. In learning theory, methods in the 
first group are often based on unsupervised learning proc-
esses (Vapnik et al., 1995). The features of known PPIs are 
mapped into unknown protein pairs by trackable ‘write-box’ 
process. That is to say, we can track the similar associated 
elements or features in the predicted interaction as that of 
known PPI.  
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Figure 1.  Framework of predicting PPIs. (A) Mapping the interacting proteins to the predicting pairs by directly comparing their 
similarities (the first group); (B) Constructing positive and negative samples to learn the interaction features for prediction (the sec-
ond group). 
 

The second group contains a supervised machine learning 
process which is often based on a classification algorithm. 
Compared to the methods in the first group, the methods in 
the second group do not provide the details of relationship 
between PPIs and individual features. They are ‘black-box’ 
learning processes. From the known interactions among 
some proteins, these methods construct positive samples 
and negative samples individually. The genomic features of 
these proteins are identified and encoded into feature vectors 
(Lu et al., 2005). The labels of interaction or non-interaction 
are used to supervise the learning algorithm so as to gener-
ate the correct predictions (Liu et al., 2012b). The classifier is 
trained by learning the features of interacting proteins as well 
as those of non-interacting proteins on the training dataset. 
Then, the targeted pairs of proteins are predicted as inter-
acted or non-interacted by the trained classifier. As shown in 
Fig. 1B, the training dataset collects the positive samples 
referred to these known interactions and negative samples to 
these non-interactions. Unfortunately, so far there has been a 
far fewer number of the reported negative protein interactions 
(Smialowski et al., 2009) in contrast to the positive protein 
interactions. Thus, it is often to sample randomly some in-
teractions from these unknown interactions between proteins 
(shown in Fig. 1) and regard them as the negative samples. 
Some other techniques have been proposed to generate the 
negative samples (Smialowski et al., 2009; Liu et al., 2012b). 
For instances, some methods generate the negative samples 
based on the subcellular location of proteins because pro-
teins in different locations will have low possibility to interact 
with each other (Lu et al., 2005). Some methods identify the 
negative samples based on the network theory of six degrees 
of separation (Chen et al., 2009), i.e., when the shortest dis-
tance between two proteins in the network of known interac-
tions is more than six, the two proteins will have weak possi-
bility of interacting with each other (Liu et al., 2012b).  

Essentially, predicting a PPI is to make a decision of 
whether or not there is an interaction in the two proteins. 
Generally, we predict the interaction by learning the knowl-
edge in these known interacting protein pairs. The genomic 
information of the two interacting proteins is identified and 
then compared with those in the predicting protein pairs (Yu 
et al., 2004). The first group is based on ‘write-box’ learning, 
which maps the information of interacting proteins into these 
unknown pairs by the analog genomic features between the 
two pairs. The knowledge has directly been implemented to 
make the prediction. On the other hand, the second group is 
based on ‘black-box’ learning. The genomic features of both 
positive samples and negative samples are encoded into 
feature vectors and they are implemented to train an algo-
rithm of classification. These machine learning algorithms 
often transform and reorganize these features underlying 
these interactions. There are no direct correspondences be-
tween features and interactions. As a result, the genomic 
features are identified and further used indirectly to predict 
PPIs.  

Obviously, the gold standard dataset of protein interac-
tions are very important for the prediction, and also highly 
affect the effectiveness and efficiency in both kinds of meth-
ods (Yu et al., 2004; Lu et al., 2005). The features underlying 
the interactions in the gold standard dataset are identified, 
learned and mapped into predicting proteins directly or indi-
rectly. The experimental protein interactions are often se-
lected as the gold standard dataset for learning and testing. 
Table 1 shows some widely-used available PPI databases for 
various species. These documented interactions are often 
selected as positive samples in the gold standard dataset. On 
the other hand, the collected and designed negative samples 
are also important for the supervisory design of output in the 
second group of machine learning algorithms. Generally, 
these methods all adopt a cross validation process for testing   
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Table 1.  Some available PPI databases 

Database Website Reference 

BioCarta http://www.biocarta.com/ Biocarta, 2012 

BioGrid http://thebiogrid.org/ Stark et al., 2006 

BIND http://www.bind.ca/ Bader et al., 2003 

DIP  http://dip.doe-mbi.ucla.edu/ Salwinski et al., 2004 

HPID http://wilab.inha.ac.kr/hpid/  Han et al., 2004b 

HPRD http://www.hprd.org/ Prasad et al., 2009 

I2D http://ophid.utoronto.ca/ Brown and Jurisica, 2007 

IntAct http://www.ebi.ac.uk/intact/ Aranda et al., 2009 

KEGG http://www.genome.jp/kegg/ Kanehisa et al., 2000 

MINT http://mint.bio.uniroma2.it/ Chatr-aryamontri et al., 2007 

MIPS http://mips.helmholtz-muenchen.de/proj/ppi/ Pagel et al., 2005 

Reactome http://www.reactome.org/ Vastrik et al., 2007 

STRING http://string.embl.de/ Mering et al., 2007 

 
the prediction performance in the gold standard dataset. 
There are typical measures defined to evaluate the prediction 
results, e.g., sensitivity (SN), specificity (SP), accuracy (ACC), 
F-measure, and Matthews correlation coefficient (MCC) (Liu 
et al., 2010), shown in the following equations: 
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where TP, FN, FP and TN are the numbers of true positive, 
false negative, false positive and true negative protein inter-
actions in the prediction, respectively. The tradeoff of speci-
ficity and sensitivity are often presented by the receiver op-
erating characteristic (ROC) curve. The area under the ROC 
curve (AUC) is also calculated. 

THE EXISTING METHODS OF PREDICTION 

A number of computational methods have been proposed to 
address the problem of predicting PPIs in the framework 
shown in Fig. 1. Table 2 lists some representative methods. 
Next, we describe their computational procedures of predict-
ing PPIs from high-throughput data. The genomic knowledge 
found in these interacting protein pairs will be checked in the 
predicting ones. Based on our categories, the direct mapping 
methods identify and employ the genomic features underlying 
the known proteins interactions. These methods map the 
interaction to the predicting protein pairs by comparing their 

corresponding features. In these write-box approaches, the 
features or elements identified in the known PPIs are mapped 
directly and clearly into the predicting protein pairs. We will 
highlight the domain association methods based on the do-
main information in the proteins, which are regarded to be the 
functional units mediating PPIs. As to the black-box ap-
proaches, the supervised machine learning methods will be 
also introduced in details.  

Direct mapping methods 

One of the first ideas for predicting PPIs is to identify the 
genomic contexts highly related to interaction events in the 
predicting proteins (Valencia and Pazos, 2002). For instance, 
it is reported that genes which interact physically or function-
ally will be kept in close physical proximity to each other on 
the genome (Tamames et al., 1997; Dandekar et al., 1998). 
The knowledge of gene neighborhood can then be detected 
to infer the interaction of these predicting proteins. 

Gene-neighborhood based method 

This method is based on the assumption that genes close in 
the genome tend to encode functionally related proteins. The 
neighborhood relationship tends to be more relevant when it 
is conserved across multiple genomes (Valencia and Pazos, 
2002). Co-localization of genes across the genomes often 
indicates their encoded proteins physically interact, especially 
in some species such as bacteria (Tamames et al., 1997; 
Overbeek et al., 1999). The PPIs can be predicted by identi-
fying the contiguity of genes on the chromosome. 

Gene fusion based method  

Gene fusion is referred to the event of proteins in one organ- 
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Table 2.  Some available methods of predicting PPI networks 

Method Model organism Major method 

Overbeek et al., 1999 Multiple organisms Gene neighborhood 

Enright et al., 1999 Three organisms Gene fusion 

Pazos and Valencia., 2001 Escherichia coli Phylogenetic tree 

Pazos and Valencia., 2002 Escherichia coli Phylogenetic profile 

Yu et al., 2004    Multiple organisms Interolog 

Jansen et al., 2002    Saccharomyces cerevisiae Co-expression 

Aytuna et al., 2005 Multiple species Docking 

Chen et al., 2006 Saccharomyces cerevisiae Domain association 

Jansen et al., 2003 Saccharomyces cerevisiae Bayesian integration 

Andres et al., 2009 Escherichia coli Five prediction methods 

Zhao et al., 2009 Fusarium graminearum Interolog and domain association method 

Sapkota et al., 2011 Oryza sativa Domain association and SVM-based method 

Liu et al., 2012b Mycobacterium tuberculosis Interolog and SVM-based method 

 
ism which have homologs in another genome fused into a 
single protein (Enright et al., 1999). The highly related gene 
relationship implies the physical interaction between their 
corresponding proteins. As to the frequency of gene fusion, 
Huynen et al. (2000) presented that most of the physical 
interactions contain the gene fusion events. Tsoka and Ou-
zounis (2000) reported that metabolic enzymes are frequently 
involved in gene fusion. The approach based on gene fusion 
for predicting protein interactions is limited to the shared do-
mains in distinct proteins (Skrabanek et al., 2008). In pro-
karyotic organisms, its true extent is still unclear (Valencia 
and Pazos, 2002).  

Phylogeny based method  

Multiple sequence alignment is effective to grasp the inter-
acting features underlying several protein pairs simultane-
ously. It is also basically implemented in the methods based 
on gene fusion and gene neighborhood. BLAST (Altschul et 
al., 1997) and Clustal series of programs (Chenna et al., 2003) 
are widely used to detect the sequence similarities. By multi-
ple sequence alignments, the phylogenetic trees of these 
analyzed proteins can be built. The similarities of interacting 
proteins are higher than those of noninteracting proteins 
(Valencia and Pazos, 2002). By analyzing the phylogenetic 
trees, the co-evolution features of interacting proteins are 
mapped into the predicting protein pairs (Jothi et al., 2005). 
Furthermore, the correlation of mutation of interacting protein 
pairs is higher than that of noninteracting proteins. From mul-
tiple sequence alignments, the correlated mutations of intra-
protein and interprotein can be identified individually (Valen-
cia and Pazos, 2002). An interaction index can be obtained 
by calculating the interprotein correlations and with the two 
intraprotein correlations. The evolutionary information de-

tected by building the phylogenetic tree can be employed to 
predict the interaction event between proteins (Valencia and 
Pazos, 2002). Goh et al. (2000) developed a standard 
measure for detecting the co-evolution of interacting proteins 
in the phosphoglycerate kinases. The results provided evi-
dence for the efficiency of coupling protein interaction rela-
tionship by building the phylogenetic tree. Pazos and Valen-
cia (2001) proposed such a method to predict a large scale 
PPI network based on the evolutionary distances between 
the sequences of the associated protein families. Correlated 
mutations were also used for predicting PPIs (Gobel et al., 
1994; Pazos and Valencia, 2002).  

The other phylogeny based method is to identify the phy-
logenetic profile of gene co-occurrences in multiple species. 
The underlying assumption of phylogenetic profile based 
method is that functionally related proteins are co-occurred in 
their evolutionary profiles (Valencia and Pazos, 2002). Each 
targeted protein can be represented by a binary vector of 
phylogenetic profile. The vector indicates the conservation 
status of the represented protein across multiple species 
(Pazos and Valencia, 2002; Valencia and Pazos, 2002). 
Often, the proteins with similar profiles are predicted to be 
interacting protein pairs. Pellegrini et al. (1999) character-
ized the correlated proteins of one interaction pair by its 
phylogenetic profile. The proteins with similar profiles have 
been proved to be functionally linked (Valencia and Pazos, 
2002). Wu et al. (2003) extended this method to identify 
functional linkages between genes by using phylogenetic 
profiles. 

Interolog based method 

An interolog is referred to an interaction between a pair of 
proteins which have interacting homologs based on conser-
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vation assumption in and across organisms (Walhout et al., 
2000; Yu et al., 2004). Interolog based method of predicting 
PPIs is to check the homologies between the analyzing pro-
teins and the interacting proteins. Suppose protein A and 
protein B are two interacting proteins, and protein A' and B' 
are two other proteins. If protein A is a homolog of protein A' 
and protein B is a homolog of B', the method will predict that 
there is an interaction between protein A' and protein B'. The 
two proteins will be predicted as interacting protein pairs by 
mapping the homolog information of these existing protein 
interactions. Walhout et al. (2000) introduced the concept of 
interologs to be orthologous pairs of interacting proteins in 
different organisms. Yu et al. (2004) present a large-scale 
quantitative assessment on the conservation of PPIs be-
tween proteins and organisms. Based on the interaction in-
formation from four species, i.e., Saccharomyces cerevisiae, 
Caenorhabditis elegans, Drosophila melanogaster, and Hel-
icobacter pylori, they verified that PPIs can be transferred 
when a pair of proteins has a high joint sequence identity. 
This provided direct evidence for the effectiveness of in-
terolog based method for predicting PPIs.  

Co-expression based method  

It was reported that proteins in the same complex tend to be 
co-expressed (Ge et al., 2001). That is to say, proteins with 
this type of physical interactions often have relevant concen-
tration of gene expression. The principle sheds light on the 
feasibility of predicting PPIs by the co-expression information 
between their corresponding genes. There are huge amount 
of gene expression profiling data stocked in various data-
bases such as GEO (Barrett et al., 2007), and there are often 
several replicated samples for one experiment. This indicates 
that we can predict the proteome-wide PPIs by calculating 
the correlations of gene expression. The high co-expression 
value between genes indicates the high possibility of interac-
tions between their downstream proteins. Compared with 
random pairs in yeast, Grigoriev (2001) concluded that the 
encoded proteins by these co-expressed genes interact with 
each other more frequently. Moreover, the interacting pro-
teins also tend to be located in the same cluster of gene ex-
pression (Jansen et al., 2002). Bhardwaj and Lu (2005) in-
vestigated the global relationship of protein interactions with 
gene expression within and across four evolutionary diverse 
species. By comparison, they identified that the 
co-expression of interacting proteins is more conserved 
than that of random ones. From the importance of evolu-
tionary information during the prediction, they improved the 
accuracy of predicting PPI by integrating the ortholog in-
formation in the correlation calculation (Bhardwaj and Lu, 
2005). Obviously, the former methods can be simultane-
ously implemented to predict proteome-wide PPIs in various 
species. STRING provides the results of such integrative 
predictions (Mering et al., 2007).  

Docking based method 

The methods reviewed in the previous subsections are based 
only on sequence-related genomic information, while docking 
based method is a structure based method of predicting PPIs. 
The docking based method will be developed gradually with 
the availability of more three-dimensional protein structures. 
Structure based docking infers not only whether the proteins 
interact, but also which residues on the protein surfaces in-
teract with each other (Zhou and Shan, 2001; Smith and 
Sternberg, 2002). The method is to analyze the docking prin-
ciple between proteins and extend their interacting features to 
other proteins. The structure complementarity of protein sur-
faces is a primary principle to analyze the docking (Smith and 
Sternberg, 2002; Aytuna et al., 2005). The shapes of inter-
acting places are identified and mapped into the similar faces 
of two proteins. The method computationally represents the 
protein surface into feature vectors. The choice of represent-
ing the protein surface is to encode the structural features of 
docking between proteins. Some complementary features 
are also defined to describe the interfaces from electrostatic 
and hydrophobic (Smith and Sternberg, 2002; Aytuna et al., 
2005). The structure features are often combined with ma-
chine learning methods, which we regarded as the second 
major categorized approaches.  

It is convenient for inferring a protein interaction map from 
sequence and genome analysis because they are easily 
available. On the other hand, to an accurate and detailed 
understanding of PPI, the structure based methods have the 
advantage to decipher the interaction mechanisms at the 
atomic level. The binding residues, the interacting atoms as 
well as the binding energy of local structures can be analyzed 
and investigated. With more three-dimensional structures are 
crystallized, the structure based methods for predicting PPIs 
will become more and more popular (Aytuna et al., 2005). In 
particular, there will be more structure templates for building 
the pool of binding pockets for the prediction (Zhou and Shan, 
2001; Valencia and Pazos, 2002).  

SCOPPI (Structural Classification of Protein-Protein In-
terfaces) categorized the types of protein-protein interface 
from the structural perspective according to the geometry of 
these interacting domains (Winter et al., 2006). We also 
quantitatively accessed the ability of predicting protein func-
tions from their local structures of pockets (Liu et al., 2007). 
These results provided direct evidence for the importance of 
functional specificities underlying the protein local structures 
of docking events. Predicting PPIs from docking structures 
will achieve high accuracy and determine the specific binding 
structure features. Certain types of residues in protein surface 
have a major contribution for protein interaction, which are 
often called ‘hot spots’ (Smith and Sternberg, 2002). It is 
originated from a binding energy concept and the prior 
knowledge about them can facilitate the prediction of protein 
interaction (Szilagyi et al., 2005; Skrabanek et al., 2008). Hot 
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spots in protein interface also provide crucial information for 
drug design. In this area, we provided a novel random forest 
model to identify the hot spots in proteins by extracting hybrid 
features which incorporate a wide range of information of the 
target residue and its spatially neighboring residues (Wang et 
al., 2012).  

Domain association methods 

Domain is a part of protein sequence and structure which is 
the basic functional unit of protein (Chen et al., 2006; Wang et 
al., 2007; Zhao et al., 2010). It is generally believed that two 
proteins interact with each other if a domain in one protein 
interacts with a domain in the other protein. Information of 
domain-domain interaction benefits the detailed understand-
ing of PPI. The association between these domains in the 
known PPIs can be extended into the predicting protein pairs, 
i.e., prediction of PPI from domain association (Chen et al., 
2006, 2009).  

Fig. 2 shows the framework of predicting PPI by associat-
ing the domain interactions (Chen et al., 2006, 2009). Firstly, 
the domains in the interacting proteins are identified (shown 
in Fig. 2A). Then, as shown in Fig. 2B, the associations be-
tween these identified domains are inferred. The do-
main-domain interaction rules are also learned from these 
interaction pairs of proteins and domains. The unknown pro-
tein pairs are predicted by their involved domains with the 
learned rules of domain interactions for contributing protein 
interactions as shown in Fig. 2C. Assume that there are N 
proteins indicated by P1,…,PN and M domains in the proteins 
represented by D1,…,DM. Let Pi also denote a set of domains 
in the protein Pi. A protein Pi may include multiple domains Dj. 
Let Pij and Dmn represent the protein pair (Pi, Pj) and the do-

main pair (Dm, Dn), respectively. Pij is also used to represent a 
set of domain pairs in Pi and Pj, i.e., ∈{ | ,mn m i nD D P D   
∈ ⊂}jP P , where P is a multi-set of all protein pairs Pij. 

Let an interaction between Pi and Pj or between Dm and Dn 
be represented by a random variable pij or dmn. Then, pij = 1 if 
Pi and Pj interact with each other, otherwise pij = 0. In the 
same manner, dmn = 1 if Dm and Dn interact with each other, 
otherwise dmn = 0. Based on the known protein interaction 
data, the association method assigns a probability of interac-
tion for domain pair Dm and Dn as (Sprinzak and Margalit, 
2001): 

≡ = =Pr( 1) ,mn
mn mn

mn

Iλ d
N

           (1) 

where Nmn is the total number of protein pairs containing 
domain pair (Dm, Dn) in the training dataset, and Imn is the 
number of interacting protein pairs containing domain pair 
(Dm, Dn) in the training dataset, i.e., ∈= ∑ { | }1ij mn ij

mn P D PN  

and ∈= ∑ { | }ij mn ij
mn ijP D PI p . Hayashida et al. (2003) defined 

the strength ρij of interaction between Pi and Pj instead of Imn 
and defined the probability of interaction between Dm and Dn 
as 
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where Nmn denotes the number of protein pairs. ρij is a confi-
dence ratio of the interaction between proteins Pi and Pj, 
which is defined as 

= ,ij
ij

O
ρ

Z
                   (3) 

where Oij is the number of times that proteins Pi and Pj are 
observed to interact in the experiments, and Z is the total 
number of the experiments containing domain pairs (Dm, Dn).  

 

 
 

Figure 2.  Framework of predicting PPIs by domain associations. (A) Identification of domains in interacting proteins. (B) As-
sociation of domain pairs related to protein interactions and learning the domain-domain interaction rules. (C) Prediction of novel 
interaction by scoring the involved domains.  
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Therefore, the probability of interaction between Pi and Pj is 
given by 

∈
= = − −∏

{ }
Pr( 1) 1 (1 ).

mn ij

ij mn
D P

p λ           (4) 

After estimating a set of interacting domain pairs from training 
protein interactions the interaction probability between a new 
protein pairs can be predicted. 

It is crucial to estimate λmn accurately from the given in-
teraction data ρij. We proposed an algorithm named Associa-
tion Probabilistic Method (APM) (Chen et al., 2006) to predict 
PPIs by defining: 

∈

⎡ ⎤− −⎢ ⎥⎣ ⎦
≡ = =

∑ 1/

{ | }
1 (1 )

Pr( 1) ,

ij

ij mn ij

P
ij

P D P
mn mn

mn

ρ

λ d
N

   (5) 

where ijP represents the number of domain pairs in Pij. Ob-

viously, if the ratio ρij for each protein pair (Pi, Pj) takes either 
0 or 1, (5) is identical to (1) or (2) because of 

∈ ∈
⎡ ⎤− − = =⎢ ⎥⎣ ⎦

∑ ∑1/
{ | } { | }1 (1 ) ij

ij mn ij ij mn ij

P
ij ij mnP D P P D Pρ ρ I . λmn in 

(5) can be viewed as a reverse function of =Pr( 1)ijp  in (4) 

when all of λmn in Pij take an identical value. Thus, the protein 
interaction of APM is obtained by substituting λmn in (5) into 
(4). Clearly, both λmn and =Pr( 1)ijp are straightforwardly 

equal to ρij for ijP  = 1 (i.e. there is only one domain pair 

between proteins Pi and Pj. On the other hand, all the domain 
pairs have the equal opportunity to contribute the interactions 
between Pi and Pj for > 1ijP  provided that there is no prior 

information. Our method has shown higher performance in 
benchmark datasets (Chen et al., 2006). Compared to the 
former methods, domain association methods define the 
interacting components in the proteins clearly, and are also 
associated with the interacting rules quantitatively. We have 
improved the association method into multiple domain pairs 
(Wang et al., 2007). Clearly, the associated domains in the 
predicting proteins can be tracked from the learned domain 

interaction principles and they are write-box approaches. The 
domain association methods are often combined with the 
following machine learning methods (Hayashida et al., 2003).  

Machine learning methods 

Compared to these write-box methods of direct mapping and 
domain association, the methods in the second group of PPI 
prediction methods often employ supervised learning algo-
rithms to mine the features in these interacting protein pairs 
as well as the noninteracting ones. The features of interacting 
protein pairs are transferred into the predicting protein pairs 
by the defined scheme of learning process. The methods 
transfer the interacting characteristics into these predicting 
protein pairs without obviously trackable feature mapping. 
The protein pairs are often encoded by these identified se-
quence, structure, and various genomic features (Jansen et 
al., 2003). The label of interaction or non-interaction is used 
as the sign to supervise the learning. The classifier is trained 
and can be used to predict the interaction in the encoded 
proteins. The features are not mapped clearly as those in the 
direct association or linear mapping methods. We can regard 
the extension of these features into predicting proteins as an 
indirect or nonlinear mapping.  

Fig. 3 shows the framework of predicting PPIs by machine 
learning methods. Firstly, the features of interacting proteins 
and noninteracting proteins including their sequences, struc-
tures, physicochemical and other defined features are identi-
fied and encoded into feature vectors (shown in Fig. 3A). The 
proteins are represented by vectors with feature elements. By 
employing a machine learning algorithm (Vapnik et al., 1995), 
e.g., naive Bayes (NB), neural network (NN), support vector 
machine (SVM) and random forest (RF), the predictor is 
trained by the features with the labels of interacting status. 
The predictor will be prepared after training (shown in Fig. 
3B). When the corresponding features of the predicting pro-
teins are available as shown in Fig. 3C, the trained classifier 
can predict whether protein X interacts with protein Y by the 
learned rules as shown in Fig. 3D. 

 

 
 
Figure 3.  Predicting PPIs by machine learning methods. (A) Encoding positive and negative samples into feature vectors indi-
vidually. The label of interaction or non-interaction will be used as supervisory signal in the learning process. (B) A classifier is 
trained to be able to distinguish the interacting protein pairs from noninteracting pairs from the encoded features. (C) Identifying the 
corresponding features of the predicting proteins. (D) Predicting the interaction between proteins.  
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Machine learning methods have widely been developed to 
predict PPIs in various species (Liu et al., 2012b). The vari-
ous genomic features and physicochemical properties are 
encoded into vectors for representing the proteins. The con-
tributed feature, the encoding scheme and the employed 
classification algorithm will affect the prediction accuracy. 
Among these genomic features, sequence information of 
gene and protein is relatively easy to be available. In this 
sense, sequence-based prediction methods have wide ap-
plication potential or scope. Shen et al. (2007) proposed a 
sequence-based method for predicting human PPIs. They 
used a sliding window technique on interacting protein se-
quences. The frequency of triplet residues in the protein se-
quences was encoded into features. After training by an SVM 
algorithm, they predicted a benchmarked protein interaction 
dataset with high sensitivity and specificity. Guo et al. (2008) 
also proposed an SVM-based predictor for PPIs. They se-
lected seven physicochemical properties of amino acids to 
reflect the protein interactions, i.e., hydrophobicity, hydrophi-
cility, volumes of side chains of amino acids, polarity, po-
larizability, solvent-accessible surface area and net charge 
index of side chains of amino acids. A protein sequence was 
then encoded into a vector by these properties. Due to the 
different lengths of protein sequences, they implemented an 
autocorrelation encoding scheme to calculate the au-
to-covariance variables from these descriptors by taking the 
effect of the neighboring residues into account. Thus, the 
interacting protein pairs were represented by concatenating 
the two vectors of auto-covariance variables. An SVM-based 
classification algorithm was trained to be the predictor by 
learning the interacting features. The method achieved a high 
prediction accuracy in yeast PPIs (Guo et al., 2008).  

With the availability of various types of high-throughput 
data, there are some methods that have been developed for 
predicting protein interactions by integrating these heteroge-
neous information (Jansen et al., 2003). Also, we can com-
bine the machine learning methods with the previous direct 
mapping methods to predict the interactions. Recently, we 
proposed such an integrative sequence-based method to 
predict the PPI networks in Mycobacterium tuberculosis (M. 
tuberculosis) by the two types of methods, i.e., interologs of 
direct mapping and indirect coupling of machine learning (Liu 
et al., 2012b). Firstly, we implemented the interolog method 
to map the documented protein interactions of other 14 or-
ganisms into M. tuberculosis. Secondly, we obtained the 
interaction features of genetic codon underlying these inter-
acting proteins in the relatively well-established interactome 
of Escherichia coli (E. coli). The positive and negative sets of 
protein interactions in E. coli were designed to test the per-
formance of our codon-based prediction methods. The ge-
nome and proteome of E. coli were downloaded and pre-
pared for the interacting sets as well as all known opening 
reading frames (ORFs) (Cole et al., 1998). The distance of 
two ORFs in terms of usage of codon c is defined as 

= −( ) ( ) ( ) ,ij i jd c f c f c  

where fi (c) and fj (c) are relative frequencies of codon c in 
ORF i and ORF j. By codon definition, =∑ ( ) 1i kk f c  and 

=∑ ( ) 1j kk f c for = K1,2, ,64k in all codons. The cross vali-

dation showed the effectiveness and efficiency of our 
SVM-based predictor. These features of genetic codons of 
interacting proteins of E. coli were mapped to the proteome of 
M. tuberculosis by the trained SVM classifier. Moreover, the 
available functional genomic information about M. tuberculo-
sis was used to evaluate the predicted interactions, i.e., gene 
co-expression, evolutionary relationship and functional simi-
larity. Multiple high-throughput data were implemented to 
assess the reliability of these predicted interactions (Liu et al., 
2012b).  

BEYOND PREDICTION 

The PPI network provides a framework of functional rela-
tionships among those involved proteins. The global linkage 
map among proteins will trigger the identification of important 
mechanisms and highly benefit further researches from the 
outline of molecular organization (Eisenberg et al., 2000; 
Barabasi and Oltvai, 2004; Chen et al., 2009). With the 
emergence and development of high-throughput technolo-
gies, it is urgent to build computational methods of recon-
structing the interaction networks from these omics data. In 
the previous sections, we summarized available strategies of 
predicting protein interactions and categorized them into 
several groups. Various features and knowledge about pro-
tein interaction events were identified and implemented to the 
prediction. The principles of how one protein interacts with 
another were learned and extended to those predicting pro-
tein pairs. The approaches have been proved to be suc-
cessful of predicting protein interactions in their own charac-
teristics.  

Because of the diversity and complexity of species, pro-
teome-wide PPI networks for many species are still not 
available (Kerrien et al., 2007). When their genome data are 
available, the protein interaction networks of the organisms 
can be generally predicted afterwards by those available 
methods. STRING has collected and predicted more than 
1000 protein interaction networks for different organisms by 
the various methods (Mering et al., 2007). The recent predic-
tion focuses on some function-specific, tissue-specific protein 
interactions and virus-host protein interactions. For instance, 
autophagy is an essential catabolic process to keep the bal-
ance of cellular products in the synthesis, degradation and 
subsequent recycling. Behrends et al. (2010) built a protein 
interaction map of autophagy in human cells by a proteomic 
analysis. They provided the global architecture of the auto-
phagy interaction network and revealed those proteins that 
interact with the core autophagic machinery and related 
molecules. The related proteins are formed into functional 
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groups of community and pathway to perform specific func-
tions. Jager et al. (2011) implemented both proteomics and 
computational experiments to identify host proteins associ-
ated with HIV-1 proteins systematically and quantitatively. 
The interaction map of HIV-1 proteins and host proteins pro-
vides the detailed relationship in the host-pathogen system 
from which new possible targets for drug design will be iden-
tified. Based on the reference PPI network of HPRD (Prasad 
et al., 2009), Wang et al. (2011) established a protein inter-
action network of human liver. They mapped the interactions 
in the human liver expression proteins by a yeast two-hybrid 
technology. In the tissue-specific protein interaction network, 
they identified the significantly different topology and func-
tional relationships in a liver-specific manner. 

Building the interaction map is a milestone for studying an 
organism at the molecular level. Inferring PPIs is not the goal 
of making these maps. It is for further extracting biological 
information, providing valuable insight and deciphering the 
mechanism from the interaction maps (Skrabanek et al., 
2008). After the reconstruction of these networks, they pro-
vide the valuable reference resources for further studies of 
phenotype mechanisms and dysfunctional pathways. Re-
cently, more and more such researches have been available 
(Ideker et al., 2008). From the interaction map, it is easy to 
determine the hub proteins and network motifs which will 
imply essential components (Milo et al., 2002; Han et al., 
2004a). Community structure in a protein interaction network 
indicates the functional characteristics underlying the protein 
cluster (Newman and Girvan, 2004). We built an optimization 
algorithm to efficiently detect the community structures in 
yeast PPI network with a high accuracy (Zhang et al., 2009). 
With more interaction data available, PPI networks are in-
creasingly serving as tools to reveal the molecular basis of 
complex diseases (Ideker et al., 2008; Chen et al., 2012; Liu 
et al., 2012a, 2012c). The topology of the proteins in the 
network has been investigated with the relationship with dis-
eases (Goh et al., 2007; Ideker et al., 2008). The protein 
interaction network has been employed to identify new dis-
ease related genes (Liu et al., 2012c). Based on these protein 
interaction maps, there are also some methods which have 
been developed to identify the active pathways and dysfunc-
tional modules in some diseases. The functional modules 
often contain biomarker properties which can be applied as 
network-based biomarkers, i.e., network biomakers and dy-
namical network biomarkers (Chen et al., 2012), for distin-
guishing disease samples (He et al., 2011, 2012; Liu et al., 
2012a, 2012c) or even pre-disease samples (Chen et al., 
2012) from normals. Moreover, the dynamics of protein in-
teraction is a key property of the PPI network (Han et al., 
2004a; Liu et al., 2011). There are some methods of scoring 
schemes which have been provided to annotate the probability 
of interaction (Bader et al., 2004; Yu et al., 2012) while the 
predicted interactions are often binary. Two proteins gener-
ally interact in some specific conditions and environment (Liu 

et al., 2011). The spatial and temporal features of these in-
teraction maps will provide deep understanding for the spe-
cific and substantial insights into the organism from the sys-
tematic perspective (Bossi and Lehner, 2009; Lage et al., 
2010; Liu et al., 2011). These features are popular aspects to 
be considered in disease research and drug discovery (Liu et 
al., 2012c). For instance, some proteins interact in normal 
condition, while the interactions disappear or rewired in the 
disease cases. The dysfunctional interactions definitely shed 
light on the disease mechanism. The network powers the 
disease mechanism research and provides new alternatives 
and resources (Liu et al., 2012c).  

There are more and more omics data available at different 
levels. The ongoing hot research topics include how to com-
bine them together to predict protein interactions and apply 
them in an integrated framework to solve biological problems. 
In our method of predicting the PPI network in M. tuberculosis, 
we built a novel framework of integrating these datasets. 
Firstly, we predicted the protein interaction network by in-
terologs and machine learning based on sequence informa-
tion. Then we implemented the information of co-expression, 
co-evolution and co-function to evaluate and access these 
predicted interactions (Liu et al., 2012b). Moreover, there are 
many valuable topics need be investigated in addition to the 
prediction of proteome-wide PPIs, such as how to integrate 
the reconstructed network with the other gene expression 
data, RNA-seq data and proteomics data to improve the 
identification of disease biomarkers, function-specific mod-
ules and dysfunctional pathways (Liu et al., 2012c).  
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