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ABSTRACT

In this paper, we present a brief review of the existing
computational methods for predicting proteome-wide
protein-protein interaction networks from high-
throughput data. The availability of various types of
omics data provides great opportunity and also un-
precedented challenge to infer the interactome in cells.
Reconstructing the interactome or interaction network
is a crucial step for studying the functional relationship
among proteins and the involved biological processes.
The protein interaction network will provide valuable
resources and alternatives to decipher the mechanisms
of these functionally interacting elements as well as the
running system of cellular operations. In this paper, we
describe the main steps of predicting protein-protein
interaction networks and categorize the available ap-

proaches to couple the physical and functional linkages.

The future topics and the analyses beyond prediction
are also discussed and concluded.

KEYWORDS proteomics, protein-protein interaction,
prediction, systems biology

INTRODUCTION

Protein always performs its biological functions by interacting
with other proteins and molecules (Eisenberg et al., 2000;
Chen et al., 2009, 2010). Many fundamental and essential
biological processes, such as signal transduction, transport,
DNA regulatory and alternative splicing, are involved in or
mediated by protein-protein interactions (PPIs) (Eisenberg
et al., 2000; Barabasi and Oltvai, 2004). It is crucial to build a
proteome-wide protein interaction network of one organism

for studying its biological functions. There are some tradi-
tionally experimental approaches such as co-immunoprecip-
itation, and newly developed high-throughput techniques
such as yeast two-hybrid screening and the combination of
large-scale affinity purification with mass spectrometry, to
detect protein interactions (Bork et al., 2004). Due to their
biological importance, there have been some well-known
databases constructed by collecting the available information
of protein interactions, such as the reported interactions de-
tected by classical experiments and by the former high-
throughput techniques (Bork et al., 2004; Stark et al., 2006).
These interactions are currently collected together in some
specialized databases for further study and investigation,
such as HPRD for human PPIs (Prasad et al., 2009) and
IntAct (Aranda et al., 2009) for PPIs of many species. To
detect protein interactions, each of the experimental methods
has its own advantages and weakness mainly due to high
false positive ratio (Valencia and Pazos, 2002). It is still labor
tensing and time consuming for detecting the PPIs by these
experiments. Moreover, the interactions among proteins are
highly related to the environmental conditions and the dy-
namics of cellular processes (Han et al., 2004a; Bossi and
Lehner, 2009). Because of the complexity of massive inter-
actions and the difficulty of detecting them by the traditional
methods, it is urgent to develop novel methods to predict
protein interactions precisely (Bork et al., 2004; Chen et al.,
2009). The computational methods provide promising alter-
natives for screening and further identifying the relationship
between these macromolecules and building their full inter-
action map. Actually, the emergence of genomics, transcrip-
tomics, proteomics, and metabolomics resources offers new
opportunity to infer the protein interaction maps of various
species from these high-throughput data (Jansen et al., 2003;
Chen et al., 2009, 2010). The inferred interaction networks
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are expected to accelerate the interactome research for each
particular organism and further lead to a comprehensive un-
derstanding of its biological processes.

The prediction of PPIs is based on a general assumption
that protein interaction is involved in basic principles and
evolutionary implications (Valencia and Pazos, 2002). The
rules of how two proteins interact can be extended to other
proteins, and the interaction can also be inferred across spe-
cies. The interaction patterns of known interacting protein
pairs are identified, and implemented to predict unknown
protein pairs. The conserved interaction mechanisms trans-
ferred in one organism can also be detected in other organ-
isms (Bork et al., 2004). Prediction of protein interaction is
based on the genomic features representing the two proteins.
There are numerous methods have been proposed to predict
the interactions between proteins (Valencia and Pazos, 2002;
Szilagyi et al., 2005; Skrabanek et al., 2008). We can cate-
gorize them into several groups based on their learning pro-
cesses for interacting features. The genomic features learned
from these interacting proteins provide the principles for pre-
diction, such as gene neighborhood (Dandekar et al., 1998),
gene fusion (Enright et al., 1999), subcellular localization (Yu
et al.,, 2004; Lee et al., 2008), similarity of evolutionary tracing
(Pazos and Valencia, 2001, 2002), gene co-expression
(Jansen et al., 2002), and docking complementarily (Aytuna
et al., 2005). These features are hypothesized to contribute
and determine the events of protein interactions. They are
defined and learned from various aspects of genomic
perspectives, e.g., sequence, structure, physicochemical
attributes as well as evolutionary tracing (Valencia and Pazos,
2002; Jansen et al., 2003). Different methods have suc-
ceeded in their own fields and cases and they also provided
new alternatives to describe the interacting proteins by en-
coding them into genomic features.

In this paper, we provide a brief review on the existing
methods for inferring protein interaction networks from
high-throughput data. Firstly, we introduce a general frame-
work of prediction. We categorize the available methods into
two groups, i.e., direct mapping of associated features or
elements, and indirect coupling of supervised learning. Then,
we summarize the main methods to address the future chal-
lenges underlying the prediction. The built interaction maps
reflect the framework of performing biological function of
thousands of proteins. We also address the advantage in
these methods for predicting protein interactions. Last but not
least, we provide several popular and future topics regarding
to functional analysis.

FRAMEWORK OF PREDICTION

Cell comprises thousands of proteins, which always perform
their functions through interacting with each other (Eisenberg
et al., 2000). Network presents a powerful model to formulate
their complicated relationships which are responsible for

cellular functions of collaborative effects of those individual
components (Barabasi and Oltvai, 2004). Mathematically,
given a network or graph G = (V, E), where V is the node set
and E is the edge set (Chen et al., 2009), we can represent
protein interactions as a protein-protein interaction (PPI)
network. The nodes in the PPI network are the interacting
proteins and the edges refer to their interactions. To predict
proteome-wide PPlIs is to infer the interactions between these
proteins in a large scale manner, i.e., prediction of E for all
nodes in V. The assumption of prediction is that protein in-
teractions are conserved across different proteins and spe-
cies (Valencia and Pazos, 2002). Generally, we first extract
the knowledge of how proteins are interacted, and then ex-
tend to determine which proteins will interact with each other.
The framework of predicting PPIs is based on the extracted
and learned genomic features underlying the known PPlIs.

Substantial efforts have been taken to infer proteome-wide
interaction maps in various species (Valencia and Pazos,
2002; Szilagyi et al., 2005; Skrabanek et al., 2008). We can
briefly categorize available methods into two major groups by
the processes of learning the genomic features from known
PPIs. As shown in Fig. 1A, the first group is to directly map
the genomic features underlying these known interacting
protein pairs into those of predicting ones. Suppose that
protein A interacts with protein B and we want to predict the
interaction status between protein X and protein Y. The direct
mapping methods identify the similarity information between
the two pairs of proteins by comparisons. For example, A is a
homolog of Y and B is a homolog of X, then we predict that X
interacts with Y. The similarities of sequence, structure, in-
terface shape, gene expression, subcellular localization,
evolutionary information as well as other genomic features
have been adopted in these interacting protein pairs and the
predicting protein pairs individually (Skrabanek et al., 2008).
These elements and features are compared and imple-
mented to predict whether the interaction exists in the pre-
dicting protein pairs or not. Clear, the first group directly
translocates the information of interacting proteins into the
targeted protein pairs. However, the features contributing
for protein interaction events are often not identified directly
in this prediction. In other words, they can be the knowledge
of genomic features about PPls, but are not necessarily
identified from these known interactions. The features de-
tected in the predicting protein pairs are used to predict the
existence of interactions (Yu et al., 2004; Lu et al., 2005).
The methods in the first group explicitly model the mapping
between unknown protein-protein pairs and features ex-
tracted from known PPIs. In learning theory, methods in the
first group are often based on unsupervised learning proc-
esses (Vapnik et al., 1995). The features of known PPlIs are
mapped into unknown protein pairs by trackable ‘write-box’
process. That is to say, we can track the similar associated
elements or features in the predicted interaction as that of
known PPI.
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Predicting interaction or not ®

Figure 1.
similarities (the first group); (B) Constructing positive and negative samples to learn the interaction features for prediction (the sec-
ond group).

The second group contains a supervised machine learning
process which is often based on a classification algorithm.
Compared to the methods in the first group, the methods in
the second group do not provide the details of relationship
between PPIs and individual features. They are ‘black-box’
learning processes. From the known interactions among
some proteins, these methods construct positive samples
and negative samples individually. The genomic features of
these proteins are identified and encoded into feature vectors
(Lu et al., 2005). The labels of interaction or non-interaction
are used to supervise the learning algorithm so as to gener-
ate the correct predictions (Liu et al., 2012b). The classifier is
trained by learning the features of interacting proteins as well
as those of non-interacting proteins on the training dataset.
Then, the targeted pairs of proteins are predicted as inter-
acted or non-interacted by the trained classifier. As shown in
Fig. 1B, the training dataset collects the positive samples
referred to these known interactions and negative samples to
these non-interactions. Unfortunately, so far there has been a
far fewer number of the reported negative protein interactions
(Smialowski et al., 2009) in contrast to the positive protein
interactions. Thus, it is often to sample randomly some in-
teractions from these unknown interactions between proteins
(shown in Fig. 1) and regard them as the negative samples.
Some other techniques have been proposed to generate the
negative samples (Smialowski et al., 2009; Liu et al., 2012b).
For instances, some methods generate the negative samples
based on the subcellular location of proteins because pro-
teins in different locations will have low possibility to interact
with each other (Lu et al., 2005). Some methods identify the
negative samples based on the network theory of six degrees
of separation (Chen et al., 2009), i.e., when the shortest dis-
tance between two proteins in the network of known interac-
tions is more than six, the two proteins will have weak possi-
bility of interacting with each other (Liu et al., 2012b).
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Framework of predicting PPIls. (A) Mapping the interacting proteins to the predicting pairs by directly comparing their

Essentially, predicting a PPI is to make a decision of
whether or not there is an interaction in the two proteins.
Generally, we predict the interaction by learning the knowl-
edge in these known interacting protein pairs. The genomic
information of the two interacting proteins is identified and
then compared with those in the predicting protein pairs (Yu
et al., 2004). The first group is based on ‘write-box’ learning,
which maps the information of interacting proteins into these
unknown pairs by the analog genomic features between the
two pairs. The knowledge has directly been implemented to
make the prediction. On the other hand, the second group is
based on ‘black-box’ learning. The genomic features of both
positive samples and negative samples are encoded into
feature vectors and they are implemented to train an algo-
rithm of classification. These machine learning algorithms
often transform and reorganize these features underlying
these interactions. There are no direct correspondences be-
tween features and interactions. As a result, the genomic
features are identified and further used indirectly to predict
PPlIs.

Obviously, the gold standard dataset of protein interac-
tions are very important for the prediction, and also highly
affect the effectiveness and efficiency in both kinds of meth-
ods (Yu et al., 2004; Lu et al., 2005). The features underlying
the interactions in the gold standard dataset are identified,
learned and mapped into predicting proteins directly or indi-
rectly. The experimental protein interactions are often se-
lected as the gold standard dataset for learning and testing.
Table 1 shows some widely-used available PPI databases for
various species. These documented interactions are often
selected as positive samples in the gold standard dataset. On
the other hand, the collected and designed negative samples
are also important for the supervisory design of output in the
second group of machine learning algorithms. Generally,
these methods all adopt a cross validation process for testing

510 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2012



Prediction of protein-protein interactions

Protein & Cell

Table 1. Some available PPI databases

Database Website Reference

BioCarta http://www.biocarta.com/ Biocarta, 2012

BioGrid http://thebiogrid.org/ Stark et al., 2006

BIND http://www.bind.ca/ Bader et al., 2003

DIP http://dip.doe-mbi.ucla.edu/ Salwinski et al., 2004
HPID http://wilab.inha.ac.kr/hpid/ Han et al., 2004b

HPRD http://www.hprd.org/ Prasad et al., 2009

12D http://ophid.utoronto.ca/ Brown and Jurisica, 2007
IntAct http://www.ebi.ac.uk/intact/ Aranda et al., 2009
KEGG http://www.genome.jp/kegg/ Kanehisa et al., 2000
MINT http://mint.bio.uniroma2.it/ Chatr-aryamontri et al., 2007
MIPS http://mips.helmholtz-muenchen.de/proj/ppi/ Pagel et al., 2005
Reactome http://www.reactome.org/ Vastrik et al., 2007
STRING http://string.embl.de/ Mering et al., 2007

the prediction performance in the gold standard dataset.
There are typical measures defined to evaluate the prediction
results, e.g., sensitivity (SN), specificity (SP), accuracy (ACC),
F-measure, and Matthews correlation coefficient (MCC) (Liu
et al., 2010), shown in the following equations:
N=_TP
TP +FN
p__IN_
TN +FP
ACC — TP+TN ’
TP+FP+TN+FN
2x SN x SP
F-measure =——,
SN + SP
TPxTN-FPxFN

~ [TP+EN)(TP+ FPY(TN + FP)(TN + FN)’

where TP, FN, FP and TN are the numbers of true positive,
false negative, false positive and true negative protein inter-
actions in the prediction, respectively. The tradeoff of speci-
ficity and sensitivity are often presented by the receiver op-
erating characteristic (ROC) curve. The area under the ROC
curve (AUC) is also calculated.

MccC

THE EXISTING METHODS OF PREDICTION

A number of computational methods have been proposed to
address the problem of predicting PPIs in the framework
shown in Fig. 1. Table 2 lists some representative methods.
Next, we describe their computational procedures of predict-
ing PPIs from high-throughput data. The genomic knowledge
found in these interacting protein pairs will be checked in the
predicting ones. Based on our categories, the direct mapping
methods identify and employ the genomic features underlying
the known proteins interactions. These methods map the
interaction to the predicting protein pairs by comparing their

corresponding features. In these write-box approaches, the
features or elements identified in the known PPIs are mapped
directly and clearly into the predicting protein pairs. We will
highlight the domain association methods based on the do-
main information in the proteins, which are regarded to be the
functional units mediating PPls. As to the black-box ap-
proaches, the supervised machine learning methods will be
also introduced in details.

Direct mapping methods

One of the first ideas for predicting PPlIs is to identify the
genomic contexts highly related to interaction events in the
predicting proteins (Valencia and Pazos, 2002). For instance,
it is reported that genes which interact physically or function-
ally will be kept in close physical proximity to each other on
the genome (Tamames et al., 1997; Dandekar et al., 1998).
The knowledge of gene neighborhood can then be detected
to infer the interaction of these predicting proteins.

Gene-neighborhood based method

This method is based on the assumption that genes close in
the genome tend to encode functionally related proteins. The
neighborhood relationship tends to be more relevant when it
is conserved across multiple genomes (Valencia and Pazos,
2002). Co-localization of genes across the genomes often
indicates their encoded proteins physically interact, especially
in some species such as bacteria (Tamames et al., 1997;
Overbeek et al., 1999). The PPIs can be predicted by identi-
fying the contiguity of genes on the chromosome.

Gene fusion based method

Gene fusion is referred to the event of proteins in one organ-
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Table 2. Some available methods of predicting PPI networks

Method Model organism

Major method

Overbeek et al., 1999
Enright et al., 1999

Pazos and Valencia., 2001

Multiple organisms
Three organisms
Escherichia coli
Pazos and Valencia., 2002 Escherichia coli
Yu et al., 2004
Jansen et al., 2002
Aytuna et al., 2005
Chen et al., 2006
Jansen et al., 2003
Andres et al., 2009
Zhao et al., 2009
Sapkota et al., 2011

Liuetal.,, 2012b

Multiple organisms

Multiple species

Escherichia coli
Fusarium graminearum

Oryza sativa

Saccharomyces cerevisiae

Saccharomyces cerevisiae

Saccharomyces cerevisiae

Mycobacterium tuberculosis

Gene neighborhood

Gene fusion

Phylogenetic tree

Phylogenetic profile

Interolog

Co-expression

Docking

Domain association

Bayesian integration

Five prediction methods

Interolog and domain association method
Domain association and SVM-based method

Interolog and SVM-based method

ism which have homologs in another genome fused into a
single protein (Enright et al., 1999). The highly related gene
relationship implies the physical interaction between their
corresponding proteins. As to the frequency of gene fusion,
Huynen et al. (2000) presented that most of the physical
interactions contain the gene fusion events. Tsoka and Ou-
zounis (2000) reported that metabolic enzymes are frequently
involved in gene fusion. The approach based on gene fusion
for predicting protein interactions is limited to the shared do-
mains in distinct proteins (Skrabanek et al., 2008). In pro-
karyotic organisms, its true extent is still unclear (Valencia
and Pazos, 2002).

Phylogeny based method

Multiple sequence alignment is effective to grasp the inter-
acting features underlying several protein pairs simultane-
ously. It is also basically implemented in the methods based
on gene fusion and gene neighborhood. BLAST (Altschul et
al., 1997) and Clustal series of programs (Chenna et al., 2003)
are widely used to detect the sequence similarities. By multi-
ple sequence alignments, the phylogenetic trees of these
analyzed proteins can be built. The similarities of interacting
proteins are higher than those of noninteracting proteins
(Valencia and Pazos, 2002). By analyzing the phylogenetic
trees, the co-evolution features of interacting proteins are
mapped into the predicting protein pairs (Jothi et al., 2005).
Furthermore, the correlation of mutation of interacting protein
pairs is higher than that of noninteracting proteins. From mul-
tiple sequence alignments, the correlated mutations of intra-
protein and interprotein can be identified individually (Valen-
cia and Pazos, 2002). An interaction index can be obtained
by calculating the interprotein correlations and with the two
intraprotein correlations. The evolutionary information de-

tected by building the phylogenetic tree can be employed to
predict the interaction event between proteins (Valencia and
Pazos, 2002). Goh et al. (2000) developed a standard
measure for detecting the co-evolution of interacting proteins
in the phosphoglycerate kinases. The results provided evi-
dence for the efficiency of coupling protein interaction rela-
tionship by building the phylogenetic tree. Pazos and Valen-
cia (2001) proposed such a method to predict a large scale
PPI network based on the evolutionary distances between
the sequences of the associated protein families. Correlated
mutations were also used for predicting PPIs (Gobel et al.,
1994; Pazos and Valencia, 2002).

The other phylogeny based method is to identify the phy-
logenetic profile of gene co-occurrences in multiple species.
The underlying assumption of phylogenetic profile based
method is that functionally related proteins are co-occurred in
their evolutionary profiles (Valencia and Pazos, 2002). Each
targeted protein can be represented by a binary vector of
phylogenetic profile. The vector indicates the conservation
status of the represented protein across multiple species
(Pazos and Valencia, 2002; Valencia and Pazos, 2002).
Often, the proteins with similar profiles are predicted to be
interacting protein pairs. Pellegrini et al. (1999) character-
ized the correlated proteins of one interaction pair by its
phylogenetic profile. The proteins with similar profiles have
been proved to be functionally linked (Valencia and Pazos,
2002). Wu et al. (2003) extended this method to identify
functional linkages between genes by using phylogenetic
profiles.

Interolog based method

An interolog is referred to an interaction between a pair of
proteins which have interacting homologs based on conser-
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vation assumption in and across organisms (Walhout et al.,
2000; Yu et al., 2004). Interolog based method of predicting
PPIs is to check the homologies between the analyzing pro-
teins and the interacting proteins. Suppose protein A and
protein B are two interacting proteins, and protein A’ and B’
are two other proteins. If protein A is a homolog of protein A’
and protein B is a homolog of B’, the method will predict that
there is an interaction between protein A" and protein B'. The
two proteins will be predicted as interacting protein pairs by
mapping the homolog information of these existing protein
interactions. Walhout et al. (2000) introduced the concept of
interologs to be orthologous pairs of interacting proteins in
different organisms. Yu et al. (2004) present a large-scale
quantitative assessment on the conservation of PPls be-
tween proteins and organisms. Based on the interaction in-
formation from four species, i.e., Saccharomyces cerevisiae,
Caenorhabditis elegans, Drosophila melanogaster, and Hel-
icobacter pylori, they verified that PPIs can be transferred
when a pair of proteins has a high joint sequence identity.
This provided direct evidence for the effectiveness of in-
terolog based method for predicting PPIs.

Co-expression based method

It was reported that proteins in the same complex tend to be
co-expressed (Ge et al., 2001). That is to say, proteins with
this type of physical interactions often have relevant concen-
tration of gene expression. The principle sheds light on the
feasibility of predicting PPIs by the co-expression information
between their corresponding genes. There are huge amount
of gene expression profiling data stocked in various data-
bases such as GEO (Barrett et al., 2007), and there are often
several replicated samples for one experiment. This indicates
that we can predict the proteome-wide PPIls by calculating
the correlations of gene expression. The high co-expression
value between genes indicates the high possibility of interac-
tions between their downstream proteins. Compared with
random pairs in yeast, Grigoriev (2001) concluded that the
encoded proteins by these co-expressed genes interact with
each other more frequently. Moreover, the interacting pro-
teins also tend to be located in the same cluster of gene ex-
pression (Jansen et al., 2002). Bhardwaj and Lu (2005) in-
vestigated the global relationship of protein interactions with
gene expression within and across four evolutionary diverse
species. By comparison, they identified that the
co-expression of interacting proteins is more conserved
than that of random ones. From the importance of evolu-
tionary information during the prediction, they improved the
accuracy of predicting PPl by integrating the ortholog in-
formation in the correlation calculation (Bhardwaj and Lu,
2005). Obviously, the former methods can be simultane-
ously implemented to predict proteome-wide PPls in various
species. STRING provides the results of such integrative
predictions (Mering et al., 2007).

Docking based method

The methods reviewed in the previous subsections are based
only on sequence-related genomic information, while docking
based method is a structure based method of predicting PPIs.
The docking based method will be developed gradually with
the availability of more three-dimensional protein structures.
Structure based docking infers not only whether the proteins
interact, but also which residues on the protein surfaces in-
teract with each other (Zhou and Shan, 2001; Smith and
Sternberg, 2002). The method is to analyze the docking prin-
ciple between proteins and extend their interacting features to
other proteins. The structure complementarity of protein sur-
faces is a primary principle to analyze the docking (Smith and
Sternberg, 2002; Aytuna et al., 2005). The shapes of inter-
acting places are identified and mapped into the similar faces
of two proteins. The method computationally represents the
protein surface into feature vectors. The choice of represent-
ing the protein surface is to encode the structural features of
docking between proteins. Some complementary features
are also defined to describe the interfaces from electrostatic
and hydrophobic (Smith and Sternberg, 2002; Aytuna et al.,
2005). The structure features are often combined with ma-
chine learning methods, which we regarded as the second
major categorized approaches.

It is convenient for inferring a protein interaction map from
sequence and genome analysis because they are easily
available. On the other hand, to an accurate and detailed
understanding of PPI, the structure based methods have the
advantage to decipher the interaction mechanisms at the
atomic level. The binding residues, the interacting atoms as
well as the binding energy of local structures can be analyzed
and investigated. With more three-dimensional structures are
crystallized, the structure based methods for predicting PPIs
will become more and more popular (Aytuna et al., 2005). In
particular, there will be more structure templates for building
the pool of binding pockets for the prediction (Zhou and Shan,
2001; Valencia and Pazos, 2002).

SCOPPI (Structural Classification of Protein-Protein In-
terfaces) categorized the types of protein-protein interface
from the structural perspective according to the geometry of
these interacting domains (Winter et al., 2006). We also
quantitatively accessed the ability of predicting protein func-
tions from their local structures of pockets (Liu et al., 2007).
These results provided direct evidence for the importance of
functional specificities underlying the protein local structures
of docking events. Predicting PPIs from docking structures
will achieve high accuracy and determine the specific binding
structure features. Certain types of residues in protein surface
have a major contribution for protein interaction, which are
often called ‘hot spots’ (Smith and Sternberg, 2002). It is
originated from a binding energy concept and the prior
knowledge about them can facilitate the prediction of protein
interaction (Szilagyi et al., 2005; Skrabanek et al., 2008). Hot
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spots in protein interface also provide crucial information for
drug design. In this area, we provided a novel random forest
model to identify the hot spots in proteins by extracting hybrid
features which incorporate a wide range of information of the
target residue and its spatially neighboring residues (Wang et
al., 2012).

Domain association methods

Domain is a part of protein sequence and structure which is
the basic functional unit of protein (Chen et al., 2006; Wang et
al., 2007; Zhao et al., 2010). It is generally believed that two
proteins interact with each other if a domain in one protein
interacts with a domain in the other protein. Information of
domain-domain interaction benefits the detailed understand-
ing of PPl. The association between these domains in the
known PPIs can be extended into the predicting protein pairs,
i.e., prediction of PPl from domain association (Chen et al.,
2006, 2009).

Fig. 2 shows the framework of predicting PPI by associat-
ing the domain interactions (Chen et al., 2006, 2009). Firstly,
the domains in the interacting proteins are identified (shown
in Fig. 2A). Then, as shown in Fig. 2B, the associations be-
tween these identified domains are inferred. The do-
main-domain interaction rules are also learned from these
interaction pairs of proteins and domains. The unknown pro-
tein pairs are predicted by their involved domains with the
learned rules of domain interactions for contributing protein
interactions as shown in Fig. 2C. Assume that there are N
proteins indicated by P4,:+-,Py and M domains in the proteins
represented by Dy,--+,Dy. Let P; also denote a set of domains
in the protein P;. A protein P; may include multiple domains D;.
Let P;j and D, represent the protein pair (P; P)) and the do-

A B

main pair (Dm, Dr), respectively. Pjis also used to represent a
set of domain pairs in P;and P, ie., {D,,|D,<cPF.D,
€ P;} c P, where Pis a multi-set of all protein pairs P;.

Let an interaction between P; and P, or between D, and D,
be represented by a random variable pjor dmn. Then, p;= 1 if
P; and P; interact with each other, otherwise p; = 0. In the
same manner, dn,= 1 if D, and D, interact with each other,
otherwise dmn, = 0. Based on the known protein interaction
data, the association method assigns a probability of interac-
tion for domain pair D, and D, as (Sprinzak and Margalit,
2001):

/

Amn =Pr(dp,, =1)=-""21, (1)
Nmn

where Np, is the total number of protein pairs containing

domain pair (D, Dy) in the training dataset, and /n, is the

number of interacting protein pairs containing domain pair

(Dm, Dn) in the training dataset, i.e., N,,, z{ AID

mnE

and /,, = Z{P D, <P }p,j . Hayashida et al. (2003) defined
12mn €6

the strength pj of interaction between P; and P; instead of Iy,
and defined the probability of interaction between Dy, and D,

as
Z{ )pu
A =Pr(dp, =1) = (2)
le'l
where Nn, denotes the number of protein pairs. pjis a confi-
dence ratio of the interaction between proteins P; and P,
which is defined as
0.
p[j = 7’1! (3)
where Oj is the number of times that proteins P; and P; are
observed to interact in the experiments, and Z is the total

number of the experiments containing domain pairs (D, D»).

& (O
\Q/\Q/

o ¢
A O

-@@

Predicting protein pairs
and their domains

= @+@

Interacting proteins with their
domains

Prediction

Inferred domain associations
and interaction rules

Figure 2. Framework of predicting PPIs by domain associations. (A) Identification of domains in interacting proteins. (B) As-
sociation of domain pairs related to protein interactions and learning the domain-domain interaction rules. (C) Prediction of novel

interaction by scoring the involved domains.
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Therefore, the probability of interaction between P; and P; is
given by
Pripj =0=1- [ (1=Am)- (4)
{Dyn Py}
After estimating a set of interacting domain pairs from training
protein interactions the interaction probability between a new
protein pairs can be predicted.

It is crucial to estimate Am, accurately from the given in-
teraction data p;. We proposed an algorithm named Associa-
tion Probabilistic Method (APM) (Chen et al., 2006) to predict
PPIs by defining:

S |1-a-a"P]

P:7|Dmn EP/’/’}
N

mn

A = PH Ay = 1) = 6

where‘P,-j‘ represents the number of domain pairs in Pj;. Ob-

viously, if the ratio p; for each protein pair (P;, P)) takes either
0 or 1, (5) is identical to (1) or (2) because of

1/\5\ B 3 .
z{ellenG%}[1_(1_pll) ! :|_Z{Pij|Dmn€P/7}plj —Imn . Amn in
(5) can be viewed as a reverse function of Pr(p,-j =1) in (4)

when all of Am, in Pj take an identical value. Thus, the protein
interaction of APM is obtained by substituting A, in (5) into
(4). Clearly, both Amy, and Pr(p; =1) are straightforwardly

equal to p; for ‘P,-j‘ = 1 (i.e. there is only one domain pair

between proteins P; and P;. On the other hand, all the domain
pairs have the equal opportunity to contribute the interactions

between P; and P; for ‘P,-j‘ >1 provided that there is no prior

information. Our method has shown higher performance in
benchmark datasets (Chen et al., 2006). Compared to the
former methods, domain association methods define the
interacting components in the proteins clearly, and are also
associated with the interacting rules quantitatively. We have
improved the association method into multiple domain pairs
(Wang et al., 2007). Clearly, the associated domains in the
predicting proteins can be tracked from the learned domain

A B
Sample Feature Label
Ae| 91| 1]|4] | 3]2[1]|5]|.. [+
©B|.2/6|5|3|..|.77|3|4]|..]+

®p| 447 2].|93]6]o].[-
PG| 2| 1(8|7]..|8/3|4[8]..-

interaction principles and they are write-box approaches. The
domain association methods are often combined with the
following machine learning methods (Hayashida et al., 2003).

Machine learning methods

Compared to these write-box methods of direct mapping and
domain association, the methods in the second group of PPI
prediction methods often employ supervised learning algo-
rithms to mine the features in these interacting protein pairs
as well as the noninteracting ones. The features of interacting
protein pairs are transferred into the predicting protein pairs
by the defined scheme of learning process. The methods
transfer the interacting characteristics into these predicting
protein pairs without obviously trackable feature mapping.
The protein pairs are often encoded by these identified se-
quence, structure, and various genomic features (Jansen et
al., 2003). The label of interaction or non-interaction is used
as the sign to supervise the learning. The classifier is trained
and can be used to predict the interaction in the encoded
proteins. The features are not mapped clearly as those in the
direct association or linear mapping methods. We can regard
the extension of these features into predicting proteins as an
indirect or nonlinear mapping.

Fig. 3 shows the framework of predicting PPIs by machine
learning methods. Firstly, the features of interacting proteins
and noninteracting proteins including their sequences, struc-
tures, physicochemical and other defined features are identi-
fied and encoded into feature vectors (shown in Fig. 3A). The
proteins are represented by vectors with feature elements. By
employing a machine learning algorithm (Vapnik et al., 1995),
e.g., naive Bayes (NB), neural network (NN), support vector
machine (SVM) and random forest (RF), the predictor is
trained by the features with the labels of interacting status.
The predictor will be prepared after training (shown in Fig.
3B). When the corresponding features of the predicting pro-
teins are available as shown in Fig. 3C, the trained classifier
can predict whether protein X interacts with protein Y by the
learned rules as shown in Fig. 3D.

c @[ [e[ e[ 2[1[7]]

@ Predicting protein pairs and their features

= @+@

@(B@ F ‘ E] Prediction

Samples and their feature representation

Trained classifier

Figure 3. Predicting PPIs by machine learning methods. (A) Encoding positive and negative samples into feature vectors indi-
vidually. The label of interaction or non-interaction will be used as supervisory signal in the learning process. (B) A classifier is
trained to be able to distinguish the interacting protein pairs from noninteracting pairs from the encoded features. (C) Identifying the
corresponding features of the predicting proteins. (D) Predicting the interaction between proteins.
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Machine learning methods have widely been developed to
predict PPIs in various species (Liu et al., 2012b). The vari-
ous genomic features and physicochemical properties are
encoded into vectors for representing the proteins. The con-
tributed feature, the encoding scheme and the employed
classification algorithm will affect the prediction accuracy.
Among these genomic features, sequence information of
gene and protein is relatively easy to be available. In this
sense, sequence-based prediction methods have wide ap-
plication potential or scope. Shen et al. (2007) proposed a
sequence-based method for predicting human PPls. They
used a sliding window technique on interacting protein se-
quences. The frequency of triplet residues in the protein se-
guences was encoded into features. After training by an SVM
algorithm, they predicted a benchmarked protein interaction
dataset with high sensitivity and specificity. Guo et al. (2008)
also proposed an SVM-based predictor for PPIs. They se-
lected seven physicochemical properties of amino acids to
reflect the protein interactions, i.e., hydrophobicity, hydrophi-
cility, volumes of side chains of amino acids, polarity, po-
larizability, solvent-accessible surface area and net charge
index of side chains of amino acids. A protein sequence was
then encoded into a vector by these properties. Due to the
different lengths of protein sequences, they implemented an
autocorrelation encoding scheme to calculate the au-
to-covariance variables from these descriptors by taking the
effect of the neighboring residues into account. Thus, the
interacting protein pairs were represented by concatenating
the two vectors of auto-covariance variables. An SVM-based
classification algorithm was trained to be the predictor by
learning the interacting features. The method achieved a high
prediction accuracy in yeast PPIs (Guo et al., 2008).

With the availability of various types of high-throughput
data, there are some methods that have been developed for
predicting protein interactions by integrating these heteroge-
neous information (Jansen et al., 2003). Also, we can com-
bine the machine learning methods with the previous direct
mapping methods to predict the interactions. Recently, we
proposed such an integrative sequence-based method to
predict the PPl networks in Mycobacterium tuberculosis (M.
tuberculosis) by the two types of methods, i.e., interologs of
direct mapping and indirect coupling of machine learning (Liu
et al., 2012b). Firstly, we implemented the interolog method
to map the documented protein interactions of other 14 or-
ganisms into M. tuberculosis. Secondly, we obtained the
interaction features of genetic codon underlying these inter-
acting proteins in the relatively well-established interactome
of Escherichia coli (E. coli). The positive and negative sets of
protein interactions in E. coli were designed to test the per-
formance of our codon-based prediction methods. The ge-
nome and proteome of E. coli were downloaded and pre-
pared for the interacting sets as well as all known opening
reading frames (ORFs) (Cole et al., 1998). The distance of
two ORFs in terms of usage of codon c is defined as

dj(c) =fi(c)-f;(c)

where f;(c) and f;(c) are relative frequencies of codon ¢ in
ORF i and ORF j. By codon definition, zkf,-(ck):1 and

Zkfj(ck):ﬁor k=12,...,64in all codons. The cross vali-

dation showed the effectiveness and efficiency of our
SVM-based predictor. These features of genetic codons of
interacting proteins of E. coli were mapped to the proteome of
M. tuberculosis by the trained SVM classifier. Moreover, the
available functional genomic information about M. tuberculo-
sis was used to evaluate the predicted interactions, i.e., gene
co-expression, evolutionary relationship and functional simi-
larity. Multiple high-throughput data were implemented to
assess the reliability of these predicted interactions (Liu et al.,
2012b).

BEYOND PREDICTION

The PPI network provides a framework of functional rela-
tionships among those involved proteins. The global linkage
map among proteins will trigger the identification of important
mechanisms and highly benefit further researches from the
outline of molecular organization (Eisenberg et al., 2000;
Barabasi and Oltvai, 2004; Chen et al,, 2009). With the
emergence and development of high-throughput technolo-
gies, it is urgent to build computational methods of recon-
structing the interaction networks from these omics data. In
the previous sections, we summarized available strategies of
predicting protein interactions and categorized them into
several groups. Various features and knowledge about pro-
tein interaction events were identified and implemented to the
prediction. The principles of how one protein interacts with
another were learned and extended to those predicting pro-
tein pairs. The approaches have been proved to be suc-
cessful of predicting protein interactions in their own charac-
teristics.

Because of the diversity and complexity of species, pro-
teome-wide PPI networks for many species are still not
available (Kerrien et al., 2007). When their genome data are
available, the protein interaction networks of the organisms
can be generally predicted afterwards by those available
methods. STRING has collected and predicted more than
1000 protein interaction networks for different organisms by
the various methods (Mering et al., 2007). The recent predic-
tion focuses on some function-specific, tissue-specific protein
interactions and virus-host protein interactions. For instance,
autophagy is an essential catabolic process to keep the bal-
ance of cellular products in the synthesis, degradation and
subsequent recycling. Behrends et al. (2010) built a protein
interaction map of autophagy in human cells by a proteomic
analysis. They provided the global architecture of the auto-
phagy interaction network and revealed those proteins that
interact with the core autophagic machinery and related
molecules. The related proteins are formed into functional
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groups of community and pathway to perform specific func-
tions. Jager et al. (2011) implemented both proteomics and
computational experiments to identify host proteins associ-
ated with HIV-1 proteins systematically and quantitatively.
The interaction map of HIV-1 proteins and host proteins pro-
vides the detailed relationship in the host-pathogen system
from which new possible targets for drug design will be iden-
tified. Based on the reference PPI network of HPRD (Prasad
et al., 2009), Wang et al. (2011) established a protein inter-
action network of human liver. They mapped the interactions
in the human liver expression proteins by a yeast two-hybrid
technology. In the tissue-specific protein interaction network,
they identified the significantly different topology and func-
tional relationships in a liver-specific manner.

Building the interaction map is a milestone for studying an
organism at the molecular level. Inferring PPIs is not the goal
of making these maps. It is for further extracting biological
information, providing valuable insight and deciphering the
mechanism from the interaction maps (Skrabanek et al.,
2008). After the reconstruction of these networks, they pro-
vide the valuable reference resources for further studies of
phenotype mechanisms and dysfunctional pathways. Re-
cently, more and more such researches have been available
(Ideker et al., 2008). From the interaction map, it is easy to
determine the hub proteins and network motifs which will
imply essential components (Milo et al., 2002; Han et al.,
2004a). Community structure in a protein interaction network
indicates the functional characteristics underlying the protein
cluster (Newman and Girvan, 2004). We built an optimization
algorithm to efficiently detect the community structures in
yeast PPI network with a high accuracy (Zhang et al., 2009).
With more interaction data available, PPl networks are in-
creasingly serving as tools to reveal the molecular basis of
complex diseases (Ideker et al., 2008; Chen et al., 2012; Liu
et al,, 2012a, 2012c). The topology of the proteins in the
network has been investigated with the relationship with dis-
eases (Goh et al., 2007; Ideker et al., 2008). The protein
interaction network has been employed to identify new dis-
ease related genes (Liu et al., 2012c). Based on these protein
interaction maps, there are also some methods which have
been developed to identify the active pathways and dysfunc-
tional modules in some diseases. The functional modules
often contain biomarker properties which can be applied as
network-based biomarkers, i.e., network biomakers and dy-
namical network biomarkers (Chen et al., 2012), for distin-
guishing disease samples (He et al., 2011, 2012; Liu et al.,
2012a, 2012c) or even pre-disease samples (Chen et al.,
2012) from normals. Moreover, the dynamics of protein in-
teraction is a key property of the PPl network (Han et al.,
20044a; Liu et al., 2011). There are some methods of scoring
schemes which have been provided to annotate the probability
of interaction (Bader et al., 2004; Yu et al., 2012) while the
predicted interactions are often binary. Two proteins gener-
ally interact in some specific conditions and environment (Liu

et al., 2011). The spatial and temporal features of these in-
teraction maps will provide deep understanding for the spe-
cific and substantial insights into the organism from the sys-
tematic perspective (Bossi and Lehner, 2009; Lage et al.,
2010; Liu et al., 2011). These features are popular aspects to
be considered in disease research and drug discovery (Liu et
al.,, 2012c). For instance, some proteins interact in normal
condition, while the interactions disappear or rewired in the
disease cases. The dysfunctional interactions definitely shed
light on the disease mechanism. The network powers the
disease mechanism research and provides new alternatives
and resources (Liu et al., 2012c).

There are more and more omics data available at different
levels. The ongoing hot research topics include how to com-
bine them together to predict protein interactions and apply
them in an integrated framework to solve biological problems.
In our method of predicting the PPI network in M. tuberculosis,
we built a novel framework of integrating these datasets.
Firstly, we predicted the protein interaction network by in-
terologs and machine learning based on sequence informa-
tion. Then we implemented the information of co-expression,
co-evolution and co-function to evaluate and access these
predicted interactions (Liu et al., 2012b). Moreover, there are
many valuable topics need be investigated in addition to the
prediction of proteome-wide PPls, such as how to integrate
the reconstructed network with the other gene expression
data, RNA-seq data and proteomics data to improve the
identification of disease biomarkers, function-specific mod-
ules and dysfunctional pathways (Liu et al., 2012c).
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