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Abstract — Detecting community structure in complex networks is a fundamental but challenging
topic in network science. Modularity measures, such as widely used modularity function @ and
recently suggested modularity density D, play critical roles as quality indices in partitioning
a network into communities. In this letter, we reveal the complex behaviors of modularity
optimization under different community definitions by an analytic study. Surprisingly, we find that
in addition to the resolution limit of @ revealed in a recent study, both @ and D suffer from a more
serious limitation, i.e. some derived communities do not satisfy the weak community definition or
even the most weak community definition. Especially, the latter case, called as misidentification,
implies that these communities may have sparser connection within them than between them,
which violates the basic intuitive sense for a subgraph to be a community. Using a discrete convex
optimization framework, we investigate the underlying causes for these limitations and provide
insights on choices of the modularity measures in applications. Numerical experiments on artificial
and real-life networks confirm the theoretical analysis.

Copyright © EPLA, 2009

Introduction. — Many systems in real world can be
represented as networks, in which nodes denote the objects
of interest and edges that connect nodes describe the
relationships between them. Examples range from social
networks, technological networks to biological networks.
These different types of complex networks have been
revealed to have common topological features such as
scale-free and small-world properties [1]. Importantly,
many complex networks have community or modular
structure, i.e., networks consist of specific, relatively
separate dense subgraphs [2]. Uncovering such community
structure not only helps us understand the topological
structure of large-scale networks, but also reveals the
functionality of each component.

A large number of methods have been developed for
detecting communities, which can be generally categorized
into local and global methods. Local methods for commu-
nity detection identify a subset of nodes as a community
according to certain local connection conditions, indepen-
dently from the structure of the rest of the network.
Such methods include clique overlap-based hierarchical

() E-mail: zxs@amt.ac.cn

clustering [3], clique percolation method [4], and subgraph
fitness method [5]. Global methods for community detec-
tion optimize certain global quantitative functions encod-
ing the quality of the overall partition of the network, such
as information theoretical method [6], Potts model [7], and
optimization of modularity measures [8,9]. One popular
modularity measure is the modularity function @ devel-
oped by Newman [10] for evaluating how good a commu-
nity partition is. Maximizing @) has been a widely accepted
method for detecting community structure of complex
networks [8,11,12]. However, @ has been exposed to resolu-
tion limit, i.e., communities smaller than certain scale may
not be revealed by optimization of ) even in the extreme
case that they are cliques connected by single bridges [13].
Recently Li et al. proposed a quantitative measure called
modularity density D to evaluate the community struc-
ture of networks [9]. Optimization of D does not show the
resolution limit that @ suffers from on some examples.
In this letter, we analytically study the complex
behaviors of modularity optimization under different
community definitions. Surprisingly, we find that in addi-
tion to the resolution limit of @) revealed in [13], there is
another serious limitation in @ and D, i.e. some derived
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communities do not satisfy the weak community
definition [14] or even the most weak community defi-
nition [15]. Especially, the latter case, called as mis-
identification, violates the well-accepted basic intuitive
sense for a subgraph to be a community. Using a discrete
convex optimization framework, we investigate the under-
lying causes for these phenomena, and give insights on the
choices of modularity measures in applications. Numerical
experiments conducted on artificial and real-life networks
confirm our theoretical analysis.

Community definition and modularity measures.
— Qualitatively, a community is a subgraph in a network
whose nodes are more densely connected with each other
than with nodes outside the subgraph [2,6,8]. Based on
the quantitative setting of “densely” and “outside”, there
are different community definitions. Radicchi et al. gave
a quantitative community definition in a weak sense [14].
Given a network G = (V, E) with node set V and edge
set E, we denote A=a;;] as its adjacency matrix. Let
P ={V1, Va,--,Vk} be a partition of the network,
V, € P, and V, =V\Vs, then Vi is a community in a
weak sense [14] if

L(Vs, Vo) > L(Vs, V), (1)

where L(V',V")=3%", v/ > jcynaij. In this weak
community definition, the sum of degrees in V; should
exceed the sum of degrees towards the rest of the network.
A much more loose definition is the most weak community
definition proposed in [15]:

L(Va, Va) > max{L(V., Vi) }, (2)
which means that the sum of degrees in V; should exceed
the sum of degrees toward any one of other communities.
We refer to Vs as an extra weak community if it does
not meet (1) but meet (2). If a community identified by
a method does not meet (2), we say that the method
masidentifies the community.

Given a partition Px = {V1, V4, - -+, Vi }, the modularity
function @ [10] is defined as

K
o=y

L(Vi,Ve)  (L(Ve, Vi) + L(Ve, Vo) \?
2L 2L

K
EZst
s=1

(3)
where L =L(V,V)/2 is the total number of edges in the
network. This measure provides a way to determine if or
not a partition is good enough to decipher the community
structure of a network. Generally, a larger @) corresponds
to a better community structure.

In contrast, for a given partition Py, the modularity
density D [9] is defined as
= K

K
D Z L(V, ‘G)“—/S'L(Vs, V) EZDS,

s=1 s=1

(4)

where |V is the number of nodes in community s. Note
that, compared with @), the denominator of D incorporates
the number of nodes in a community.

0
Z ey
IS
o T e
e H7 A\ R

Fig. 1: (Colour on-line) Examples on which optimization of @
or D violates the weak or most weak community definition.

Despite the good performance of ) and D in many prac-
tical networks, they may lead to apparently unreasonable
partitions in some cases. We observe that optimization
of @ and D leads to some communities failing to satisfy
the weak community definition (1) or even the most weak
community definition (2) in some networks. An example
is given in fig. 1(a), where there are five 6-cliques, any
two of which are connected by 8 edges. Let Ps denote
the partition where each 6-clique is a community, and P;
denote the whole network as a community. It is easy to
see that Q(Ps) =44/155> 0= Q(P1), which implies that
maximizing ) partitions the network into five extra weak
communities. Figure 1(b) shows another example in which
extra weak communities are not qualified communities in
the basic qualitative sense. () partitions the network into
2 communities (K, and Kj3) when n >3, while D parti-
tions it into 2 communities (K, and K5) when n > 10. An
example for the misidentification of @ or D is shown in
fig. 1(c), where @ (respectively, D) partitions the network
into three communities (two K,, and one K5) when n > 16
(respectively, n > 21), in which Kj is a subgraph violating
the most weak community definition. Next, we give a theo-
retical analysis to show that these phenomena in optimiz-
ing @ and D exist in a wide range of network structure.

Optimization analysis of Q and D. — To analyze
the complex behaviors of @) and D, we formulate the
optimization of ¢ and D as two two-stage nonlinear
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Fig. 2: (Colour on-line) Two exemplar networks: (a) ring of
lumps and (b) ad hoc network.

programming problems, respectively,

K
Qrr: mIgXQz(K)—mIgXHIgix;QS, (5)

K
Dyr: mlz}xD[(K)—mI?xrr})ix;Ds, (6)
where P = {V1, Va,- -+, Vi } is a partition of the network.

Obviously, analytically solving these two optimization
models on a general complex network is impossible. As
in [9,13], we make the following analysis on two widely
used exemplar networks: a ring of dense lumps [13] and
an ad hoc network [10,16], which are shown in fig. 2.
The network ring of lumps consists of N(N >8 and
N =2% ke {3,4,5--}) dense lumps, each with m nodes
and [;, edges. Between two adjacent lumps there are
lpw edges. When [, =1 and the lumps are cliques, the
ring of lumps becomes a ring of cliques which has been
discussed in [9,13]. The ad hoc network consists of N
dense subgraphs, and there are [, edges between each
pair of dense subgraphs. Hence, the total number of edges
in this network is L = Ni;, + N(N — 1)lp,, /2. In addition,
we assume that the edges in the lumps or between the
lumps are evenly distributed.

Suppose that we partition the whole network into K
communities with each community containing N; lumps,
where Ni + -4+ Ng = N. By substituting the variables
N; and the number of edges and nodes in each candi-
date community into (5) and (6), we found that optimiza-
tion models (5) and (6) become two two-stage discrete
convex/concave programming problems. Specifically, for
the ring of lumps, the first-stage optimization model
in (5) is a discrete convex programming in the feasi-
ble region F'={1,2,4,---,N/25tY N/25 N/2571 ... N},
whose solution can be obtained by solving its K-K-T equa-
tions [17]. Qr(K) is a discrete concave function, so the
solution of the second-stage optimization model in (5)
can be given by the derivative of Q;(K) at zero. In
a similar way, the first-stage optimization in (6) is a
convex programming problem which can be solved from its
K-K-T equations. D;(K) is a discrete concave func-
tion, thus Dj; is a discrete convex programming and
can be easily solved. For the ad hoc network, similar
analysis can be done. The only difference is that the

D, v i RL RL

R

RL

Fig. 3: (Colour on-line) Modularity optimization of @ and D
on two exemplary networks. RL and EW respectively mean the
resolution limit region and the extra weak community region.
Green “y/” means the partition is correct in terms of the weak
definition.

convexity /concavity of the first-stage optimization and the
second-stage optimization in (5) and (6) depends on the
relations between [;,, and l,,. Here we omit the details.

The solutions K¢, and K7, of the optimization models
(5) and (6) on two networks are summarized in fig. 3 in
terms of resolution limit and extra community phenom-
enon. In the case of the ring of lumps, the optimal solution
of model (5) is

|

which is a point in F' nearest to

lin+lbw\/ﬁ> 7 (7)
F

lbw

\/% VN. Similarly,

the optimal solution of model (6) is

K} = <(li" +l*’“’)N> .
F

e (8)

When Iy, <lin/(9N/16—1) (derived from Kg=N),
both modularity measures can identify known communi-
ties, with each lump as a community. When [, is larger
than l;,/(9N/16 — 1) and less than l;,/2 (derived from
K3} =N), D is still able to identify the known communi-
ties but @ identifies a collection of lumps as a community.
In terms of the weak community definition, D suffers from
the resolution limit when Iy, € (I;,/2, ;) which depends
on network structure, whereas @ has resolution limit
when lpy, € (lin/(9N/16 — 1), 1;;,) which depends on both
network structure and network scale. It implies that for a
large scale network, @ is more likely to fail to find smaller
qualified communities. When l;, <l < 2l;5,, the lumps
do not satisfy the weak definition. Both @ and D has the
resolution limit in terms of the most weak definition since
either KZ? or K7, does not equal N. When [, > 2l;,,, the
lumps do not satisfy the most weak definition anymore.
Optimal solutions are achieved neither at N nor at 1.

As we see, when lpy >l /(9N/16 —1), @ identifies
a collection of lumps as a community. The number of
communities is proportional to v/N. This result can be
verified by the example in [13], where the authors only
considered the case Iy, = 1. In fact, when [, = 1, we have
lin/(N —1) <1 that leads to l;;, < (N — 1) which implies

38002-p3



X. S. Zhang et al.

that the number of detected communities is larger than
N, + N — 1, consistent with the result in [13].
Through the same analysis framework, for the ad hoc
network, the optimal solution of model (5) is

N,
KQ:

1, lbw > 21”1 .

lbw < 211,71’

(9)
The optimal solution of model (6) is

Na lbw<2lin/(N+1)7
Kp=

(10)
1, lpw > 2l /(N +1).

Note that each lump in the ad hoc network does not
satisfy the weak definition anymore when I, > 20,/
(N —1). We can see that both @ and D correctly identify
known communities with each lump as a community when
lyw < 2lin/(N +1). However, when Iy, € (2l;n/(N +1),
2lin/(N =1)), @ still works but D has the resolution
limit since it groups all lumps into a single community.
Fortunately, this is a very narrow interval whose length
decreases with the increase of the network scale. When
lbw > 2lin /(N — 1) which means that lumps do not satisfy
the weak community definition anymore, D works well
under the weak definition (or equivalently, D has a
resolution limit under the most weak definition until
lbw =2lin), but @ identifies the lumps as extra weak
communities until ly,, = 2l;,. When [, > 2[;,, the lumps
do not satisfy the most weak definition anymore. Both
@ and D correctly identify the whole network as a
community.

From above analysis, we conclude that for a class of
networks represented by the ring of lumps, optimization
of both () and D has resolution limit and cannot resolve
small communities smaller than a scale. The range of
network structure that D suffers from resolution limit is
smaller that @. Both @ and D may identify some extra
weak communities in this type of large and dense networks.
For a class of networks represented by the ad hoc network,
@ identifies extra weak communities in a large range of
network structure, while D performs well except a narrow
resolution limit interval. Although in evenly distributed
ad hoc networks, no communities are found to violate
the most weak definition, in an unevenly distributed
network (e.g. fig. 1(c)), it is very likely that some derived
communities by optimization of ) and D do not satisfy
the most weak definition. In the next section, we conduct
numerical experiments to confirm the theoretical analysis
and show that these phenomena in optimization of ¢ and
D are common in artificial and real-life networks.

Experimental results. — Although the exemplary
networks have special topology structures, the conclu-
sion obtained on them provides insights into general
complex networks. In this section, we conduct computa-
tional experiments by using a simulated annealing (SA)

b 1
——D ——D
x 0.8 “* Q| 0 ——Q
g 306
506 g
o o 04
Qo o
<04 <2
2 0 =
%273 5 7 9 1113 15 1 2 3 4 5 6 7 8
Kout out

Fig. 4: (Colour on-line) Comparison of @ and D in terms
of accuracy on 4-community (left) and 50-community (right)
ad hoc networks, where accuracy R denotes the fraction of
nodes correctly classified into the original communities.

procedure as in [11] to confirm that those limitations exist
in optimization of @ and D on general complex networks
and point out the types of networks that @ and D suit
for.

Artificial networks. ~ We first use a benchmark set of
computer-generated networks as examples [2], in which
each network has 128 nodes divided into 4 communities,
each with 32 nodes. Edges are placed randomly with two
fixed probabilities k;, and k. such that the average
degree of a node is 16. The average edge connection of each
node to nodes in other communities is denoted by k. For
each ko, 10 random ad hoc networks are generated. The
derived partitions are evaluated by the fraction of nodes
correctly classified into the original communities (denoted
as R).

The average accuracy over 10 ad hoc networks is
summarized in fig. 4(a). We can see that when k,,; is
small, i.e. the networks have distinct communities, both
modularity measures have good performance in identify-
ing known communities. When k,,; becomes large, espe-
cially when k., > 8, the known communities in original
networks become very ambiguous, and the detected parti-
tions by both measures are quite different from the original
ones. When 6 < ks < 10, @ seems to have better perfor-
mance than D. This is natural, since we can see from their
definitions that D puts more penalty on outward edges of
communities than Q. Figure 5(a) and fig. 5(b) show the
extra weak communities identified by @ and D, where the
community numbers include both communities satisfying
the weak definition (denoted as T') and the communities
failing to satisfy the weak definition (denoted as F'). We
can see that D has no extra weak community phenomenon,
whereas when k,,; > 8, some communities detected by @
are extra weak communities. This computational result is
consistent with the theoretical analysis.

The ad hoc networks described above only have four
communities, so the resolution limit in () does not appear.
Now we generate another set of ad hoc networks with 50
communities of size 8. The average node degree in these
communities is 8. The results are summarized in fig. 4(b).
We can see that, due to the resolution limit of @, i.e., the
tendency to group several known dense subgraphs into
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Modularity density D Modularity function Q
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Fig. 5: (Colour on-line) Comparison of @ and D in terms
of extra weak communities on 4-community ((a), (b)) and
50-community ((c), (d)) ad hoc networks, where T' (F') denotes
communities satisfying (failing to satisfy) the weak definition.

one community, ) has a bad performance even for the
networks with small k,,;. This result is consistent with
the observation in [13]. In contrast, D has a good perfor-
mance when k,,; is small. With the increasing of Ky,
D groups all communities into one since at this time the
communities become very ambiguous. From fig. 5(c) and
fig. 5(d), again we see that D does not suffer from extra
weak community phenomenon, whereas optimization of
@ can lead to extra weak communities. The comparison
results also provide us some insights on the network char-
acteristics that these two modularity measures suit for.
For a dense network with obvious community structure,
Q@ is a good choice, whereas for a large sparse network
with small communities, it is better to use D. Consis-
tent with our theoretical analysis, in evenly distributed
ad hoc networks like the above 4-community network and
50-community network, optimization of ¢ may lead to
extra weak communities, but has no misidentification
phenomenon.

Real-life networks. ~ We further examine the optimiza-
tion of @ and D on several well studied real-life networks,
such as the email network (EmailNet) [18], the jazz
musician network (JazzNet) [19], and the scientific collab-
oration network (SciNet) [20]. In addition, we construct
a transcriptional regulatory network in yeast from global
ChIP-chip experiments [21,22], denoted as YeastTRN. A
smaller network is extracted from YeastTRN by merely
considering the regulatory relationships among transcrip-
tion factors (represented by YeastTFR). The network
partitions derived by optimization of ¢ and D are
summarized in table 1, where the column ng (np) lists

Table 1: Results on the real-life networks by optimizing @
and D.

Network Node Edge @ nQ D np
EmailNet 1133 5451 0.57 10(0) 63.16 31(1)
JazzNet 198 2742 0.44 4(1*) 52.84 4(1)
SciNet 118 200 0.75 7(0) 28.30 16(0)
YeastTRN 4441 12873 0.48 14(2) 15.78 15(1)
YeastTFR 162 663 0.35 6(3) 11.50 4(0)

Fig. 6: (Colour on-line) Communities identified by optimization
of @ and D on the jazz musician network.

the number of communities obtained by optimizing @
(D), and the figures in parentheses are the number
of extra weak communities (those with stars denote
the communities violating the most weak community
definition).

From table 1 we can see that the extra weak community
phenomenon of @ and D is common in real-life networks.
By comparing the results of @ and D, we can see that
@ more seriously suffers from this problem than D. This
computational result is consistent with what we observed
in the theoretical analysis. Furthermore, communities
determined by optimizing ¢ in most of the networks are
fewer than those detected by optimizing D, which may be
due to the resolution limit of Q. A typical example is the
jazz musician network describing the collaboration among
jazz bands [19], in which nodes denote the bands and edges
represent linked bands with at least one shared musician.
Due to the black/white racial segregation and the cities
that bands recorded in, the network can be divided into
three communities in reality. We found that both @ and D
partition this network into four communities (fig. 6). An
extra weak community identified by D (triangle nodes)
has 22 nodes consisting of several connected groups.
An 4-node community identified by @ (yellow nodes)
has 5 inner edges and 17, 30, 32 edges towards other
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three communities, respectively and violates the most
weak community definition. These results demonstrate
that optimizing @ and D does lead to the extra weak
communities and misidentification phenomenon in some
real-life networks.

Table 1 shows that the extra weak community problem
of @ and D is also common in biological networks. For
YeastTFR, D gives a partition with four communities,
whereas () partitions the network into six communities,
three of which are extra weak communities. We used the
GO Term Finder to examine the significant function terms
shared by TFs in a community. We counted the number
of GO terms with p-value smaller than 1 x 10~° in each
community, and then calculated the average number of
significant GO terms for a partition. The result shows
that the partition given by D has 35 significant GO
terms while the partition obtained by @ only has 25.6
significant GO terms, indicating that D is more effective
in detecting biological functional modules than @. In an
extra weak community given by @ with 24 nodes, there are
29 significant GO terms with p-value less than 1 x 1077,
In contrast, a correctly identified community of almost
similar size is enriched with 37 significant GO terms.
Furthermore, we randomly selected some sets of nodes
with the similar size and the average number of significant
GO terms in such random sets is 19.8, much lower than
that of two types of communities mentioned above. It
further indicates that the extra weak community problem
may lead to unreasonable network partition and attention
should be taken in applying modularity measures for
community detection.

Conclusion and discussion. — We investigate modu-
larity optimization for community identification through a
discrete convex/concave programming framework in this
letter. We show that the resolution limit of @ and D is
closely related to the structure of the network. The modu-
larity @ is much more sensitive to the resolution limit for a
range of network structure than D. Importantly, we found
that optimization of @) or D may violate the weak or even
most weak community definition. Especially, they may
misidentify the community structure of some networks.
Our analysis provides insights into limitation and applica-
bility of @ and D. Computational experiments on general
complex networks confirm the theoretical analysis.

The violation of the weak or most weak community
definition is partially caused by the fact that @ and D
only globally evaluate a partition or community structure,
without considering the local connections of individual
subgraphs. Taking the weak definition as an example,
given a partition P={Vy,Vs, -+, Vk}, if for any i, V;
satisfies the weak definition, then D(P) > 0 and Q(P) > 0.
Note that the reverse of the statement is not correct, i.e.,
if D(P)>0 or Q(P) >0, then it is not necessary for all
V; to satisfy the weak community definition. To make all
the derived communities satisfy the weak or most weak
community definition, it is natural to add the inequalities
(1), (2) into optimization models (5), (6) as constrained

optimization problems. It should be noted that, when @
and D are used as independent indices to evaluate how
good a given partition or community structure is, there
is no way to simply combine a constraint into ¢ and D
to overcome their limitations. Therefore, further research
work is needed to develop better modularity functions.
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