
Team # 3485 Page 1 of 20

Sudoku Puzzles Generating: from Easy to Evil

Abstract
As Sudoku puzzle becomes worldwide popular among many players in different intellectual

levels, the task is to devise an algorithm that creates Sudoku puzzles in varying level of difficulty.
With the analysis of the game rules, we first define the difficulty level from four aspects as: total
given cells, distribution of given cells, applicable techniques of logic deduction and complexity of
enumerating search.

By the guidance from the definition of difficulty level, the algorithm for generating puzzles is
developed with the “dig-hole” strategy on a valid grid. Thus, the algorithm developed in two steps:
to create a valid grid by Las Vegas algorithm, and then to generating puzzles by erasing some
digits using five operators:

 Determine a sequence of digging holes according to the desirable difficulty level,
 Set two restrictions to guide the distribution of given cells,
 Judge whether a puzzle being dug out has a unique solution by a solver built using Depth-First

Search,
 Add pruning technique to avoid digging an invalid cell, and
 Perform propagating at a dug-out puzzle to raise the diversity of the output puzzle.

Using our developed algorithm, we generate Sudoku puzzles in any five difficulty levels. The
difficulty level of output puzzles can be adjusted by a desirable difficulty value input by players.
The complexity of the algorithms in space and time is analyzed to demonstrate the effectiveness of
the algorithms.

Our main contributions in exploring the “dig-hole” strategy are summarized as following three
works: to do a massive research on the sequence of digging holes and how it affects the algorithm
to create a evil-level puzzle with minimal given cells, to invent a skill for judging the solution’s
uniqueness of a puzzle being dug out by the reduction to absurdity, and to reduce the
computational time by avoiding backtracking to an explored cell and refilling an empty cell.

Keywords: Dig-hole Strategy, Las Vegas Algorithm, Pruning, Reduction to Absurdity

Team # 3485 Page 2 of 20

Contents

1 Background ...3

1.1 Sudoku is Hot...3

1.2 How to Play..3

2 Problem Analysis...4

2.1 Our Tasks..4

2.2 Related Works..5

2.3 Basic Ideas ...5

3 Assumptions and Definitions..6

4 Metrics of Difficulty Level ...6

5 Specification of Algorithms...9

5.1 Solving Algorithm: Depth‐first Search ...9

5.2 Generating Algorithm ..10

5.2.1 Creating Terminal Pattern: Las Vegas Algorithm...10

5.2.2 Digging Holes ..11

6 Results ...17

7 Analysis of Algorithm Complexity ..18

8 Strengths and Weaknesses ...18

8.1 Strengths ...18

8.2 Weaknesses...19

9 Conclusions ...19

References ..19

Team # 3485 Page 3 of 20

1 Background

1.1 Sudoku is Hot

Sudoku puzzle, as a widely popular intellectual game in recent years, was invented
in Swiss in 18th century. Then, it initially harvested well development in Japan in
the past decades. The name Sudoku actually derives from Japanese that means
“number place” [1].

Due to its simple and friendly rules for beginners and the charm from intellectual
challenge, Sudoku becomes welcome recently for players of various ages. You are
even able to solve a Sudoku puzzle easily without any mathematical knowledge.

1.2 How to Play

How is the Sudoku game played? You only need to know where you play the game
and what your goal is. The both simple aspects that help you join the game are
specified as follows:

 Game Environment: you may first get a general overview of this game board in
Figure 1.1.

Figure 1.1: General view of Sudoku game environment

We define several basic components of the board as Figure 1.1 illustrates. The
whole board is actually a 9-by-9 grid made of nine smaller 3-by-3 grids called
blocks. The smallest unit square is called a cell which has two types of states:
empty, and confirmed by a digit from 1 through 9. We mark the whole gird with
rows and columns from top-left corner.

Team # 3485 Page 4 of 20

 Goal of the Game: generally, Sudoku game is started with such a situation in grid
that some of the cells have already been confirmed by digits known as givens.
The task for Sudoku players is to place a digit from 1 to 9 into each cell of the
grid, and meanwhile each digits can only be used exactly once in each row, each
column and each block. Additionally, all the nine rows, nine columns and nine
blocks are respectively ensured to contain all the digits from 1 through 9. These
limitations for placing digits in three locations are respectively called row
constraint, column constraint and block constraint.

Based on the rules that we mentioned above, Sudoku players are commonly inspired
to complete the placement of digits into all empty cells using various techniques as
soon as possible.

2 Problem Analysis

2.1 Our Tasks

Since Sudoku game is hugely attractive for worldwide players in different
intellectual levels, it is significantly necessary for researchers to create puzzles
tailored to the difficulty requests of players in a tolerable time. Meanwhile, these
created puzzles must yield a unique solution so that players can complete the puzzles
based on confirmed cells using logic-deducing step by step. A puzzle with unique
solution also shows sufficient intellectual challenges in the pursuit of terminal
answer, and highlights the inherent charm of Sudoku game.

Thus, we develop an algorithm to construct specific Sudoku puzzles with the
consideration of the following three requirements:

1. Varying difficulty: essentially, the algorithm should be able to create puzzles in

different levels of difficulty. It regulates that the algorithm for creating must be
designed by means of two jobs as follows:

 Difficulty level: define what the difficulty level is, and evaluate a fixed
Sudoku puzzle by a grading algorithm.

 Extensibility: a varying number as a metric of difficulty request from a play
can be input by the player. Based on this number, the algorithm for
creating must be applicable to generate diverse puzzles satisfying the
difficulty request of the player.

2. Unique solution: all generated Sudoku puzzles must be guaranteed to yield a
unique solution by a solving algorithm.

3. Minimizing complexity: the programs of all these algorithms must finish their
jobs in a short time accepted by users or players.

Team # 3485 Page 5 of 20

In sum, we need to solve the entire problem of creating Sudoku puzzles by
developing the three algorithms respectively for solving, grading and generating.

2.2 Related Works

By reviewing the history of Sudoku development, Sudoku puzzles grow up from an
intellectual game for humans to a challenging problem for algorithm development
with the participation of computer science. A famous demonstration in [2] claims
that the total number of valid 9-by-9 Sudoku grids is
6,670,903,752,021,072,936,960. Another powerful conclusion shows that the
minimal amount of givens in an initial Sudoku puzzle that can yield a unique
solution is 17 given cells [3]. Recently, researchers engaged in algorithm
development issues some breakthroughs in Sudoku solving, grading and generating
by Genetic Algorithm, evolutionary method with geometric crossover, belief
propagation etc.[4], [5], [6].

Amount these algorithms, the simplest and easiest one for implementation of
generating puzzles is digging-hole method. The idea of this method begins with a
valid grid that seems the same as a terminal pattern of puzzle. Then, a fixed amount
of confirmed cells are dug into empty cells by some mechanism or sequence. While
a confirmed cell is dug out, the remaining pattern of grid as an incomplete puzzle
must be judged whether the puzzle can yield a unique solution. The difficulty level
is mainly determined by the amount of empty cells.

2.3 Basic Ideas

Our generating algorithm stands on the shoulders of “giant” who initially proposed
the idea of digging holes. In this paper, our main efforts are paid to research how to
dig holes. For instance, given a terminal pattern, which cell do you plan to dig at
first? What about next one? Can the puzzle being dug yield a unique solution after a
cell is dug out? Therefore, constructing a mechanism for the operation of digging is
worthy of further developing. Our creative works that answer the above questions
well is distinguished from the existing methods in the following critical aspects:

 Explore how to assign the sequence of digging holes according to different levels
of difficulty.

 Find an easy method, reduction to absurdity, to judge the solution’s uniqueness of
the puzzle after a cell is dug out.

 Reduce the computational time spent in digging holes skillfully by pruning and
the avoidance of backtracking.

Team # 3485 Page 6 of 20

3 Assumptions and Definitions

 We scale the game environment of a Sudoku puzzle within a 9-by-9 grid, and take
no consideration of the Sudoku puzzle in other size of the grid.

 All the statistic data of the running time in this paper are counted by our computer.
These data have reliable statistic values and comparability since they are
collected under the same computational condition.

4 Metrics of Difficulty Level

In this section, we develop a metrics to determine the difficulty level of a Sudoku
puzzle from both computing perspective and human logic deducing perspective.
Four factors affecting the difficulty level are taken into consideration in this metrics
respectively as follows:

 The total amount of given cells,
 The lower bound of given cells in each row and column,
 Applicable techniques by human logic thinking, and
 Enumerating search times by computer.

By weighting the above four factors with scores, we grade a Sudoku puzzle in five
levels as follows:
Level 1 Extremely Easy
Level 2 Easy
Level 3 Medium
Level 4 Difficult
Level 5 Evil

1. The total amount of given cells
As the first factor affecting the level estimation, the total amount of given cells in an
initial Sudoku puzzle can significantly eliminate potential choices of digits in each
cell by the three constraints in the game rules. In general, it is reasonable to argue
that the more empty cells provided at the start of a Sudoku game, the higher level the
puzzle graded in. We moderately scale the amount ranges of givens for each difficult
level in Table 1.

Table 1: The amount ranges of givens in each difficult level

Level Givens Amount Scores
1 (Extremely easy) more than 50 1
2 (Easy) 36-49 2
3 (Medium) 32-35 3

Team # 3485 Page 7 of 20

4 (Difficult) 28-31 4
5 (Evil) 22-27 5

2. The lower bound of given cells in each row and column

The positioning of the empty cells significantly affect the difficulty level if two
puzzles provide the givens in the same amount or in slight difference at the start of a
Sudoku game. The puzzle with the givens in clusters is graded in higher level that
that with the givens in scattered distribution. Based on the row and column
constraints, we regulate the lower bound of given cells in each row and column for
each difficulty level in Table 2.

Table 2: The lower bound of given cells in each row and column for each
difficulty level

Level
Lower bound of givens amount

in rows and columns
Scores

1 (Extremely easy) 5 1
2 (Easy) 4 2
3 (Medium) 3 3
4 (Difficult) 2 4
5 (Evil) 0 5

3. Applicable techniques by human logic thinking

The popular techniques solving Sudoku puzzle using human logic thinking are
summarized in [1]. These techniques have been graded in basic, intermediate and
advanced levels according to the efforts of logic thinking. We score all these
techniques and grade them into the five levels as Table 3 shows.

Table 3: Scoring all the techniques

Techniques Scores
Row, Column and Block Elimination 1
Lone rangers in block 2
Lone rangers in column 2
Lone rangers in row 2
Twins in block 3
Twins in column 3
Twins in row 3
Triplets in block 4
Triplets in column 4
Triplets in row 4
Brute-force elimination 5
Backtracking in brute-force elimination 5

Then, we can partially grade a puzzle in such a way that if a puzzle can be solved by
a technique, it will be rewarded with the scores of the technique. In this way, the

Team # 3485 Page 8 of 20

high scores the puzzle is rewarded, the higher level it will be probably graded into.

4. Enumerating search times by computer
Apart from logic-thinking techniques, it is verified by our practice that a Sudoku
puzzle can be solved by enumerating search within tolerable time. The computer
does a trial that filling an empty cell with a digit from 1 through 9, then check
whether the filled digit can meet the three constraints in the game rules. Next trial
will be done if the previous one is successful. We define searching once during the
enumerating search as the computer does such a trial. In this way, the enumerating
search can find out all the valid solutions after it tried all the potential combinations
of digits by the trials. Since the total search times indicate the scope of potential
combinations, they imply how many trials a player has to explore if he does not
know any logic technique. We estimate the difficulty of a Sudoku puzzle partially
using the total enumerating search times as Table 4 indicates.

Table 4: Enumerating search times in each difficulty level

Level Enumerating search times Scores
1 (Extremely easy) less than 100 1
2 (Easy) 100-999 2
3 (Medium) 1000-9999 3
4 (Difficult) 10000-99999 4
5 (Evil) more than 100000 5

Based on the four factors that we analyze above, we sample how a Sudoku puzzle is
graded into a difficulty level.

We deploy our developed algorithm following specified in Section 5 to create a
Sudoku puzzle in the evil level, shown in Figure 4.1. This puzzle is scored based on
the four factors, which display in Table 5 as below.

Figure 4.1: An evil-level Sudoku puzzle created by our algorithm

Notice: the digits with smaller size are the selectable ones based on the three constraints of the
game rules. Using the technique, Triplets in block, we claim that the digits of 4, 5 and 8 cannot
be filled in the other empty two cells in the block.

Team # 3485 Page 9 of 20

Table 5: A puzzle scored based on the four factors

Factor Interpretation Weights Scores

Total givens total 22 givens, within the range in level 5 0.4 5

Lower bound in rows
and columns

0 givens in Row 1, reach the lower bound
in Level 5

0.2 5

Applicable technique
Triplets in block is applied, high technique
in Level 5

0.2 5

Search times search 263734 times, Level 4 0.2 4
Global evaluation Level 5: evil total: 4.8

5 Specification of Algorithms

Our entire algorithm for creating a Sudoku puzzle in fixed level of difficulty is
performed by creating a terminal pattern, digging holes based on the difficulty level
while checking whether the constructed puzzle can yield a unique solution.

5.1 Solving Algorithm: Depthfirst Search

An effective solving algorithm for searching out all the feasible solutions of a
Sudoku puzzle is indispensible for the generating algorithm to judge whether a
created puzzle has a unique solution. Since a Sudoku puzzle is shown as a 9-by-9
grid with sufficient information from givens and strict constraints of game rules, it is
feasible to search out all the solutions of the puzzle using enumerating search.

For finding out a solution as a terminal pattern or judging whether a created puzzle
is unique-solvable, we build a Sudoku solver by the mechanism of Depth-first search.
The solver searches empty cells from left to right, top to bottom in the grid. It
attempts to fill a potential 1-through-9 digit in each empty cell while satisfies the
three constraints of game rules. Once none of digits from 1 through 9 can be filled in
an empty cell to meet the constraints, the solver backtracks to the previous empty
cell and substitutes the filled digit there into another untried potential digit. In this
way the solver continuously performs the search until all the potential solutions are
searched out and recorded.

Team # 3485 Page 10 of 20

5.2 Generating Algorithm

With the both tools, the metrics of difficulty level and the solver of Sudoku puzzle,
the generating algorithm constructs a varying-difficulty Sudoku puzzle in two steps
as follows:

 Step 1: Create a terminal pattern;
 Step 2: Digging holes to generating a puzzle.

 5.2.1 Creating Terminal Pattern: Las Vegas Algorithm

The operator of creating a terminal pattern (known as a pattern of solution) stands
ahead in the whole performance of generating algorithm. We randomly create a
terminal pattern by means of a randomized algorithm, Las Vegas Algorithm [7].

Obviously, a terminal pattern can be generated from an empty pattern by means of
the solver. For enhancing the diversity of the generated puzzles, we first randomly
locate n cells in an empty grid and then fill these empty cells with random 1-to-9
digits while satisfy the game rules. This step yields a puzzle with n givens. Whether
this puzzle can be solved within tolerable time (for example 0.1s) is determined by
the positions and values of these givens.

Suppose P(x) is the probability that the puzzle with a set of givens is solvable. The
Las Vegas algorithm performs the event x continuously until the event happens,
where the event stands for completing the generation of a terminal pattern within the
fixed time. In programming words, the function las_vegas(P(x)) will return TRUE if
the event happens with the probability P(x), otherwise will return FALSE and
performs the event again until it returns TRUE as the following codes:

while (!las_vegas(P(x)))

The probability of the event P(x) is affected by the amount of random givens n. Thus,
we fix several n and then perform the event 10000 times for each n. A statistic result
about the relationship between the probability that the event happens and the amount
of givens n is illustrated in Figure 5.1.

Team # 3485 Page 11 of 20

Figure 5.1 the relationship between the probability that the event happens and
the amount of givens n.

Finally, we find that randomly creating a puzzle with 11 givens can help to minimize
the computational time and meanwhile enhance the diversity of the generated
puzzles.

 5.2.2 Digging Holes

The strategy of digging holes method is, as its name implies, to generate a Sudoku
puzzle by erasing several digits in confirmed cells of a terminal pattern. In addition,
different mechanisms of digging holes lead to the diversity of constructed puzzles
with various patterns or in varying difficulty level.

For speeding up the generation of a puzzle, we build the mechanism of digging holes
with greedy strategy. Once a confirmed cell is dug out into an empty cell, the
following operation is forbidden from filling another digit into this cell again.

The procedure of the digging holes method for generating a varying difficulty puzzle
is outlined by the following flow chart (Figure 5.2):

Team # 3485 Page 12 of 20

Figure 5.2: Flow chart

 Operator ○1 : The sequence of digging holes
The sequence of digging holes regulates that which cell in a terminal pattern is first
explored by the operation of digging holes, and which cell is the next. Four types of
sequence are concluded from our quantities of trials as below:
Sequence 1: Left to Right then Top to Bottom (seen in Figure 5.3 (a))
Sequence 2: Wandering along “S” (seen in Figure 5.3 (b))
Sequence 3: Jumping one cell (seen in Figure 5.3 (c))
Sequence 4: Randomizing globally

Team # 3485 Page 13 of 20

(a) (b) (c)

Figure 5.3: The illustrations of the four types of sequences

With these four sequences a Sudoku puzzle can be generated in any difficulty level
within tolerable time (1s) excluding the evil. Meanwhile, we find that puzzles with
fewest givens can be generated by Sequence 1. However when we make a puzzle of
evil level based on the four sequences respectively, there is an obvious difference
between the results which are drawn from average running time and the rate of
success. The statistic output is shown in Table 6.

Table 6: Comparison of the effectiveness of the four sequences in generating an
evil-level puzzle

Sequence type Average running time Rate of success
Randomizing globally 12723.00ms 13.33%
Jumping one cell 1224.73ms 89.66%
Wandering along “S” 1375.52ms 100%
Left to Right then Top to Bottom 1088.35ms 100%

Thus, taking consideration of the feasibility of the methods and the diversity of the
produced puzzles, we assign these four sequences to the five difficulty levels as
Table 7 indicates.

Table 7: the assignments of sequences for different levels

Level Sequence type
1 (Extremely easy) Randomizing globally
2 (Easy) Randomizing globally
3 (Medium) Jumping one cell
4 (Difficult) Wandering along “S”
5 (Evil) Left to Right then Top to Bottom

Operator ○2 : The restriction of digging holes
When completing one digging trial, the rest confirmed cells can be regarded as

Team # 3485 Page 14 of 20

givens and the entire grid seems to be a puzzle. Based on the metrics of difficulty
level, we set two restrictions on the amount of givens remained by each digging
operation. The range of total amount of givens and the lower bound of givens in
rows and columns, as the both restrictions, are determined by the desiring difficulty
value input by players.

 Restriction 1: randomize a bound value within the range of the total givens, and
the remained cells must be more than that bound value.

 Restriction 2: the remained cells in each row and column must be more than the
lower bound of givens in rows and columns.

A trial of digging hole proves to be illegal once violating either of the two
restrictions.

The both restrictions guarantee sufficient information implied in a constructed
puzzle is supportive for human logic deducing.

 Operator ○3 : Judge the uniqueness of solution by reduction to

absurdity
We develop a new strategy to judge whether the puzzle with remained cells as
givens can yield a unique solution after digging a hole in one trial. This strategy is
interpreted step by step as below:
In one trail of digging a hole, suppose we try to dig a cell filled with the digit 6, then
Step 1: substitute the digit 6 into another new one from 1 through 9 one by one
excluding 6 while meeting the game rules;
Step 2: call the solver to solve the puzzle with the givens including the new digit.
Step 3: once the solver reports a solution, terminate the solver and claim that the
puzzle generated by digging out the digit 6 into empty cell has two solutions at least
because originally a solution exists when the cell is filled with the digit 6.
Step 4: only if all rest 8 digits excluding 6 are used to do such a trial in step 1 and 2
and the solver reports none solution, it is safe to claim that the puzzle generated by
digging out the digit 6 into empty cell has a unique solution, which means that the
operation of digging out the digit 6 is feasible and legal.

 Operator ○4 : Pruning optimization
Using pruning technique we reduce the running time spent in doing massive trials of
digging holes. We interpret the process of digging holes in details, which is
illustrated in Figure 5.4.

Team # 3485 Page 15 of 20

(a) (b) (c) (d) (e)

Figure 5.4: Process of pruning technique

Suppose we finish digging a hole at the top-left corner and indicate this empty cell
by filling it with 0 (seen at (a)). We do a trial of digging a hole at the digit 2 (seen at
(b)), and then find that the puzzle with remained cells as givens can yield at least
two solutions by the solver. Since the operation of digging out 2 is unfeasible, we
claim that the pattern in which more cells are dug out than pattern (b) is unfeasible
as well (seen at (c)). Thus we refill the digit 2 into the cell at (R1,C2) (known as
Row 1, Column 2), and try to dig the cell (R2,C1) (seen at (d)). Suppose we are then
told that the pattern (d) has a unique solution by the solver. When we try to select
next cell to dig from pattern (d), the cell (R1,C2) are eliminated from the selectable
cells because the pattern (d) returns to the unfeasible pattern (c). Thus the next cell
tried to dig may be any cell in the grid excluding the cells ever tried to dig as (R1,C2)
and the empty cells as (R1,C1). Based on this analysis, we regulate that a cell can
only be tried to dig once, which concludes that we only need to try to dig a cell at
most 81 times for each cell from a terminal pattern, and any empty cells should not
be refilled again. This strategy significantly differs from the “Backtrack” idea.

By testifying the effectiveness of the pruning technique, we perform massive
operations of digging holes with the pruning technique and without the pruning
technique. Finally we find the pruning technique is significantly effective in
reducing the running time as Table 8 indicates.

Table 8: The affection of pruning technique on running time

Pruning technique Average running time
Without 55106.23ms
With 1088.35ms

Operator ○5 : Equivalent propagation
By analyzing the properties of Sudoku puzzles based on the game rules, four types
of propagation in a valid grid (known as terminal pattern) can change the puzzle
pattern while obeys the game rules. We illustrate these propagations in Figure 5.5.

Team # 3485 Page 16 of 20

(a) Propagation 1: mutual exchange of two digits

(b) Propagation 2: mutual exchange of two columns in the same column of blocks

(c) Propagation 3: mutual exchange of two columns of blocks

(d) Propagation 4: grid rolling

Figure 5.5: The illustrations of the propagations

Team # 3485 Page 17 of 20

6 Results

Based on the specification of algorithms above, we create Sudoku puzzles in five
levels respectively within tolerable time using our developed solving and generating
algorithms while guarantees each of these puzzles has a unique solution.

 Level 1: Extremely easy Level 2: Easy

Level 3: Medium

 Level 4: Difficult Level 5: Evil

Figure 6: The results

Team # 3485 Page 18 of 20

7 Analysis of Algorithm Complexity

For generating Sudoku puzzles we develop an algorithm with negligible space
complexity. Thus we concern significantly about time complexity of our algorithm,
and focus on reducing it in order to achieve the generation of Sudoku puzzle within
tolerable time for players.

The entire algorithm for generating Sudoku puzzle is divided into two parts: to
create a terminal pattern and then to dig holes on it. The time complexity of creating
a terminal pattern proves to be , which indicates that a terminal pattern can be
produced within constant-magnitude time. In the algorithm of generating puzzles,
the program does trials of digging a hole at most 81 times in the terminal pattern.
For guaranteeing the uniqueness of solution derived from the constructed puzzle, a
solver built by the Depth-First Search is called to find out all potential solutions of
the dug-out puzzle once a trial of digging a hole is done at an unexplored cell. The
time complexity of the Depth-First Search proves to be

(1)O

(V E)Θ + in [8]. The
amount of in the problem of solving a Sudoku puzzle is estimated to be
less than 1500000.

()V E+

8 Strengths and Weaknesses

8.1 Strengths

 Basically, we have devised an extensible algorithm to generate Sudoku
puzzles in different levels of difficulty, which is adaptive well the demands
from many players in different intellectual levels.

 After massive efforts paid in exploring the relationship between the sequence
of digging holes and the difficulty levels of the generated puzzles, we
generate Sudoku puzzles using different sequences of digging holes to adapt
the characters of different levels of difficulty.

 By introducing the pruning technique, we minimize the running time spent in
digging holes to generate Sudoku puzzles.

 Using a randomized algorithm called Las Vegas algorithm and equivalent
propagating transformation, we raise the diversity of Sudoku puzzles
generated by our algorithms.

Team # 3485 Page 19 of 20

8.2 Weaknesses

 Unfortunately, we are not able to build a superb generator of Sudoku puzzle
to simulate all the existing techniques by human logic thinking in grading a
Sudoku puzzle.

 As a sub-goal that is to generate an evil-level Sudoku puzzle with minimal 17
givens, we can only achieve the generation of the evil-level Sudoku puzzle
with 22 givens at least.

9 Conclusions

With the task that is to create Sudoku puzzles of varying difficulty, we construct the
metrics to define a difficult level, and develop an algorithm to generate Sudoku
puzzles in different levels of difficulty by means of “dig-hole” strategy. In this paper,
our massive works in exploring the mechanism of digging holes are concluded as
below:

 Conclusion 1: the Left to Right then Top to Bottom sequence of digging holes is
helpful to generate an evil-level puzzle with clustering distribution of givens;
correspondingly the full-randomized sequence for an easy-level one with
scattered distribution.

 Conclusion 2: it is simply demonstrated by the reduction to absurdity that
whether an unexplored cell can be dug out legally meanwhile guarantees the
solution’s uniqueness of the puzzle being dug out.

 Conclusion 3: the running time spent in digging holes can be optimized by
avoiding backtracking to an explored cell and refilling a cell dug into empty.

By comparison with modern optimization algorithms like Genetic Algorithm, our
generating algorithm with “dig-hole” strategy performs better in consumed
computational time and earns higher practical value for business implementation.

References

[1] Wei-Meng Lee, Programming Sudoku (Technology in Action), Apress. 2006.

[2] Bertram Felgenhauer and Frazer Jarvis. http://www.shef.ac.uk/~pm1afj/sudoku/.

[3] Gordon Royle, The University of Western Australia. Minimum Sudoku.

http://people.csse.uwa.edu.au/gordon/sudokumin.php

http://portal.acm.org/citation.cfm?id=1137725

Team # 3485 Page 20 of 20

[4] Timo Mantere, Janne Koljonen. Solving, Rating and Generating Sudoku Puzzle

with GA. IEEE Congress on Evolutionary Computation, 25-28 Sept. 2007, pp.
1382-1389.

[5] Alberto Moraglio, Julian Togelius, Simon Lucas. Product Geometric Crossover

for the Sudoku Puzzle. Proceedings of the IEEE Congress on Evolutionary
Computation, 2006. http://privatewww.essex.ac.uk/~amoragn/sudoku.pdf

[6] Todd K. Moon, Jacob H. Gunther. Multiple Constraint Satisfaction by Belief

Propagation: An Example Using Sudoku. Utah State University. Adaptive and
Learning Systems, 2006 IEEE Mountain Workshop on. 24-26 July 2006, pp.
122-126.

[7] M.H.Alsuwaiyel, Algorithms Design Techniques and Analysis. London: World

Scientific Publishing Company. 1998.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. 2002.

Introduction To Algorithms, Seccond Edition. CA: The MIT Press.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4424445

	1 Background
	1.1 Sudoku is Hot
	1.2 How to Play
	2 Problem Analysis
	Our Tasks
	2.2 Related Works
	2.3 Basic Ideas

	3 Assumptions and Definitions
	4 Metrics of Difficulty Level
	5 Specification of Algorithms
	Solving Algorithm: Depth-first Search
	5.2 Generating Algorithm
	 5.2.1 Creating Terminal Pattern: Las Vegas Algorithm
	 5.2.2 Digging Holes

	6 Results
	7 Analysis of Algorithm Complexity
	8 Strengths and Weaknesses
	8.1 Strengths
	8.2 Weaknesses

	9 Conclusions
	References

